研究生: |
林畊佑 Lin, Geng-You |
---|---|
論文名稱: |
電場調控單層二硫化鉬的激子-聲子耦合現象 Electric Field Control of Exciton-Phonon Coupling in Monolayer Molybdenum Disulfide |
指導教授: |
陸亭樺
Lu, Ting-Hua 藍彥文 Lan, Yann-Wen |
口試委員: |
陸亭樺
Lu, Ting-Hua 藍彥文 Lan, Yann-Wen 陳美杏 Chen, Mei-Hsin |
口試日期: | 2023/12/14 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 激子 、聲子 、二硫化鉬 |
研究方法: | 實驗設計法 、 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400360 |
論文種類: | 學術論文 |
相關次數: | 點閱:145 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大多數的半導體材料,例如矽,在存在電場的情況下其光學性質不會有顯著變化。這使得具有大電光響應的材料(例如鍺和砷化鎵)與矽的CMOS製造集成變得困難。然而,在石墨烯等二維材料中,因其特殊的能帶結構和零能隙的特性,電場效應可以引起顯著的光吸收變化,但是由於石墨烯在可見光頻率下缺乏能隙,因此其在實際應用中存在一定的限制。
單層二硫化鉬(MoS2)是一種最為廣泛研究的二維材料之一,由一層鉬原子和硫原子組成。與半金屬石墨烯不同,單層二硫化鉬(1H-MoS2)是一種具有1.85電子伏特直接能隙的半導體材料,因此在可見光範圍內具有光學活性。我們製備了單層二硫化鉬元件,並研究了在外部藉由離子凝膠施加外加電場時其光學性質的變化。
通過對單層二硫化鉬材料施加外部電場,我們可以實現光致發光量子產率和吸收係數的控制。這意味著我們可以通過調節外部電場來調節二硫化鉬材料的光學響應,從而實現在可見光範圍內的電控制光學元件的應用潛力。此研究為利用二硫化鉬這種具有特殊光學性質的二維材料在光電子學和光子學領域中的應用提供了新的可能性。
Cong, X., et al., Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. npj 2D Materials and Applications, 2020. 4(1): p. 13.
Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
Placidi, M., et al., Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: vibrational properties of atomically thin MoS2 layers. 2D Materials, 2015. 2(3): p. 035006.
Wang, S., et al., Orientation dependent interlayer stacking structure in bilayer MoS 2 domains. Nanoscale, 2017. 9(35): p. 13060-13068.
Singh, A., S.N. Shirodkar, and U.V. Waghmare, 1H and 1T polymorphs, structural transitions and anomalous properties of (Mo, W)(S, Se) 2 monolayers: first-principles analysis. 2D Materials, 2015. 2(3): p. 035013.
Tornatzky, H., et al., Phonon dispersion in MoS 2. Physical Review B, 2019. 99(14): p. 144309.
Zhang, X., et al., Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chemical Society Reviews, 2015. 44(9): p. 2757-2785.
Saito, R., et al., Raman spectroscopy of transition metal dichalcogenides. Journal of Physics: Condensed Matter, 2016. 28(35): p. 353002.
Thomas, A. and K.B. Jinesh, Excitons and Trions in MoS2 Quantum Dots: The Influence of the Dispersing Medium. ACS omega, 2022. 7(8): p. 6531-6538.
Zhao, Y., et al., Characterization of excitonic nature in Raman spectra using circularly polarized light. ACS nano, 2020. 14(8): p. 10527-10535.
Liu, H. and D. Chi, Dispersive growth and laser-induced rippling of large-area singlelayer MoS2 nanosheets by CVD on c-plane sapphire substrate. Scientific reports, 2015. 5(1): p. 11756.
Özavcı, E., et al., A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range. Sensors and Actuators A: Physical, 2013. 194: p. 259-268.
Mikheev, E., et al., Ionic liquid gating of srtio3 lamellas fabricated with a focused ion beam. Nano Letters, 2022. 22(10): p. 3872-3878.
Ou, H., et al., Electric-field-induced metal-insulator transition and quantum transport in large-area polycrystalline MoS 2 monolayers. Physical Review Materials, 2022. 6(6): p. 064005.
Choi, Y., et al., Low-voltage 2D material field-effect transistors enabled by ion gel capacitive coupling. Chemistry of Materials, 2017. 29(9): p. 4008-4013.
Newaz, A., et al., Electrical control of optical properties of monolayer MoS2. Solid State Communications, 2013. 155: p. 49-52.
Miller, B., et al., Tuning the Fröhlich exciton-phonon scattering in monolayer MoS2. Nature communications, 2019. 10(1): p. 807.