簡易檢索 / 詳目顯示

研究生: 李茂維
Li, Mao-Wei
論文名稱: TiN緩衝層影響TiAlN硬質薄膜特性之研究
A Study of Effects of TiN Buffer Layer on Properties of TiAlN Hard Thin Film
指導教授: 屠名正
Twu, Ming-Jenq
鄭慶民
Cheng, Ching-Min
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 79
中文關鍵詞: 氮化鈦氮化鋁鈦多層膜田口實驗設計直流磁控濺鍍
英文關鍵詞: TiN buffer layer, TiAlN/TiN multi-layers, Taguchi method, DC magnetron sputtering (DCMS)
DOI URL: https://doi.org/10.6345/NTNU202203014
論文種類: 學術論文
相關次數: 點閱:114下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化物硬質薄膜具高硬度、化學穩定性外,並提升耐磨耗、腐蝕性,降低使用成本。本研究使用直流磁控濺鍍製備氮化物多層膜(TiN/TiAlN),瓷金刀具(NX2525)、SUS304不銹鋼及蘇打玻璃為基材。
    應用田口實驗設計,L9 (34)直交表,探討TiN緩衝層(Buffer layer)濺鍍參數,包括: 基板溫度、濺鍍功率、氮氬比、基板偏壓,影響氮化物多層膜(基材/ Buffer layer /TiAlN)微結構及機械性質之研究。

    實驗結果,直交表L9(34)多層膜(基材/TiN/TiAlN),機械性質優於單一硬質薄膜(基材/TiAlN),其中,田口No.7參數緩衝層(TiN)有最佳硬度(413.0 HV)、彈性回復量(22.76 %),田口No.7參數製備多層膜(TiN/TiAlN)有最佳硬度(739.2 HV),彈性回復量(42.12 %),鍍層刀具銑削結果得知,No.7有較低之刀腹磨耗(16.2µm)與工件表面粗糙度(Ra=1.987µm),經過相互比對分析,緩衝層薄膜性質特性影響硬質薄膜。由灰關聯分析田口實驗及實驗驗證,顯示緩衝層最佳濺鍍參數:
    (Substrate temperature:Room、Ti DC power:150W、N2/(N2+Ar) flow ratio:45%、Substrate bias:-50V),有最佳硬度(431.0 HV)、彈性回復量(20.87 %),最佳濺鍍參數多層膜(TiN/TiAlN)有最佳硬度(747.4 HV)、彈性回復量(45.226 %),最佳濺鍍參數銑削結果,有最小刀腹磨耗(14.5µm)與工件表面粗糙鍍(Ra=1.632µm),工件表面粗糙度及刀腹磨耗改善率分別為17.7%,10.5%。
    此外,本研究另探討基材電漿蝕刻與未蝕刻製備最佳參數多層膜(TiN/TiAlN)進行比對,根據薄膜性質分析與鍍層刀具銑削結果說明,薄膜硬度、彈性回復量、刀腹磨耗量及工件表面粗糙度值均有改善。顯示電漿蝕刻,使基材表面粗化,薄膜沉積性質較優良。

    The nitride hard thin film has good properties such as high hardness and chemical stability which can protect coated materials to resist weariness and corrosion, and lower down the cost. This study used DC magnetron sputtering to fabricate muti-layer nitride (TiN/TiAlN), cermet cutting tool (NX2525), and stainless steel SUS304 with soda glass as substrate.
    Taguchi method with L9 (34) orthogonal arrays is used to study the effects of TiN buffer layer sputtering parameters on nitride multi-layer microstructure and mechanical properties. The sputtering parameters include temperature of substrate, sputtering power, helium-argon ratio and substrate bias.
    The experiments show that No. 7 of L9 (34) orthogonal arrays gives the best result. The multi-layer thin film (substrate/TiN/TiAlN) has better mechanical properties than those of single hard thin film (substrate/TiAlN). The buffer layer (TiN) has optimal hardness (413.0 HV) and elastic resilience (22.76%). The multi-layer thin film (TiN/TiAlN) has best hardness (739.2 HV) and elastic resilience (42.12 %).
    The milling results show that coated cutter has lower flank wear (16.2µm) and better surface roughness of workpiece (Ra = 1.987µm). The comparison shows the property of buffer layer has impact on the hard thin film.
    The grey relational analysis of results of experiment gives the best sputtering parameters as follows: substrate temperature: room, Ti DC power:150W, N2/(N2+Ar) flow ratio:45%, substrate bias:-50V. Those parameters generate hardness (431.0 HV) and elastic resilience (42.12 %) for buffer layer (TiN), hardness (747.4 HV) and elastic resilience (42.226 %) for best multi-layer thin film (TiN/TiAlN).
    The milling experiment of cutter coated by using the best sputtering parameters gives smallest flank wear (14.5µm) and surface roughness of workpiece (Ra=1.632µm), which shows the improvements of 17.7% and 10.5% respectively.
    The optimal manufacturing parameters for multi-layer film (TiN/TiAlN) were compared for substrate with and without plasma etching. According to the analysis of thin film and milling results of coated cutter, there are great improvements on the following properties: thin film hardness, elastic resilience, the wear on the flank of cutting tool and surface roughness of workpiece. It is shown that plasma etching make substrate surface rough and hence better thin film deposition quality.

    目錄 摘要 i Abstract iii 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 3 2.1 電漿原理(Principle of plasma) 3 2.2 濺鍍製程原理(Sputtering process) 5 2.2.1 磁控濺鍍(Magnetron Sputtering Deposition) 7 2.2.2 反應式濺鍍(Reactive sputtering) 9 2.3 薄膜成長 10 2.3.1 薄膜微結構觀察 11 2.4 氮化物硬質薄膜 13 2.4.1 氮化物多層薄膜 14 2.5 田口實驗法(Taguchi methods) 14 2.5.1 田口直交表(Orthogonal Arrays) 15 2.5.2 信號雜訊比(Signal-to-noise ratio,S/N)特性 15 2.5.3 因子的分類 16 2.5.4 灰關聯分析 17 2.6 奈米壓痕理論 19 2.6.1 影響奈米壓痕數值因素 22 第三章 實驗方法 24 3.1 實驗步驟 24 3.2 實驗設計 26 3.2.1 濺鍍製程參數設計 26 3.2.2 銑削實驗參數 27 3.3 實驗材料與設備 28 3.3.1 基材 28 3.3.2 靶材 29 3.3.3 銑削工件 29 3.3.4 直流磁控濺鍍設備 29 3.4 直流磁控濺鍍流程 30 3.4.1 基材前置處理 30 3.4.2 薄膜製備流程 31 3.5 薄膜分析設備 32 3.5.1 場發射掃描式電子顯微鏡(FE-SEM) 32 3.5.2 X光繞射分析儀(X-Ray Diffraction,XRD) 33 3.5.3 微細形狀輪廓儀(α-step) 34 3.5.4 低真空電子顯微鏡 36 3.6 薄膜機械性質分析設備 37 3.6.1 動態微小硬度計 37 3.6.2 表面粗糙度量測儀 38 3.6.3 工具顯微鏡 39 第四章 結果與討論 40 4.1 L9(34)直交表TiN緩衝層薄膜分析 40 4.1.1 薄膜硬度與彈性回復量 40 4.1.2 TiN緩衝層成分分析(EDS) 41 4.1.3 TiN緩衝層微結構分析(Fe-SEM) 42 4.1.4 X光繞射儀 45 4.2 L9(34)直交表TiN緩衝層/TiAlN多層膜分析 46 4.2.1 刀腹磨耗 46 4.2.2 工件表面粗糙度 49 4.2.3 工件表面及刀腹磨耗SEM分析 52 4.2.4 多層膜(TiN/TiAlN)硬度與彈性回復量 56 4.2.5 多層膜(TiN/TiAlN)微結構分析(Fe-SEM) 57 4.2.6 多層膜(TiN/TiAlN)成分分析(EDS) 62 4.2.6 X光繞射儀 63 4.3 L9 (34) TiN緩衝層/TiAlN最佳化分析 64 4.3.1 灰關聯最佳化TiN緩衝層薄膜 67 4.3.1 灰關聯最佳化多層膜(TiN/TiAlN)薄膜 68 4.4 基材電漿蝕刻沉積多層膜(TiN)/TiAlN 71 第五章 結論 75 參考文獻 77

    [1] Harish C. Barshilia,K. Yogesh,K.S. Rajam,“Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering”,Vacuum,Vol.83, pp.427–434, 2009.
    [2] M. Van Stappen,L.M. Stals, M. Kerkhofs,C. Quaeyhaegens,“State of the art for the industrial use of ceramic PVD coatings”,Surface&Coating Technology,Vol.74–75, pp. 629, 1995.
    [3] R. Chandra, P. Dubey,V. Arya, S.K. Srivastava,D. Singh,“Study of thermal stability and mechanical properties of fcc phase Zr22W19N58 thin films deposited by reactive magnetron sputtering”,Surface & Coatings Technology,Vol. 245, pp. 34-39, 2014.
    [4] 李輝煌,田口方法—品質設計的原理與實務,高立圖書股份有限公司,2000.
    [5] 李銀安,受控熱核融合,牛頓出版社,1998.
    [6] S.Sivaram,“Chemical vapor deposition”,(ITP Inc., New York), chapter 6 pp.119-162, 1995.
    [7] 鍾永文,“物理蒸鍍氮化鉻鍍膜於碳化鎢基材高溫氧化性能之研究",碩士論文,國立高雄第一科技大學,碩士論文,2003.
    [8] W.R. Grove,“On some henomena of the voltaic discharge”, The Philosophical Magazine, Vol.16, pp.478-482, 1840.
    [9] Dipanjan Mazumdar,“Coherent Magnetotunneling based on (001) Magnesium Oxide Barrier”,Brown University,Ph.D.,October 2007.
    [10] P. B. Barna and M. Adamik, Thin Solid Films 317, 27 , 1998.
    [11] J. A. Thornton,“HIGH RATE THICK FILM GROWTH”, Annual Review of Materials Science. Vol.7, pp.239-60, 1977.
    [12] B.A. Movchan, A.V. Demchishin, “Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide”, Physical Metal Metallurgy, Vol.28, pp.83-90, 1969.
    [13] V. Craciun, D. Craciun, G. Socol, G. Dorcioman, D. Simeone, D. Gosset, S. Behdad, B. Boesl, “Ar ions irradiation effects in ZrN thin films grown by pulsed laser deposition",Applied Surface Science,Vol. 336, pp.129-132, 2015.
    [14] C.Y. Hsu,G.C. Chen,C.C. Hu,C.H. Wang a,T.W. Lu,“Direct current reactive co-sputter deposition of CrWN films to enhance cutting tool performance.",International Journal of Refractory Metals and Hard Materials,Vol.37, pp.82-89 , 2013.
    [15] U. Wahlstrom, L.Hultman,J-E. Sundgren, “Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering”, Thin Solid Films,Vol.235,pp.62-70, 1993.
    [16] J.L.Endrino,G.S.Fox-Rabinovich,C.Gey, “Hard AlTiN,AlCrN PVD coatings for machining of austenitic stainless steel” ,Surface and Coatings Technology Vol.200, pp.6840-6845, 2006.
    [17] M. Zhou, Y. Makino, M. Nose, K. Nogi, “Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering”, Thin Solid Films, Vol.339, pp.203-208, 1999.
    [18] 吳復強,田口品質工程,全力圖書公司,1992.
    [19] D.Hariskos, M.Ruckh, U.Rühle, T.Walter, H.W. Schock, “A novel cadmiumfree buffer layer for Cu(In,Ga)Se2 based solar cells”, Solar Energy Materials and Solar Cells, Vol.41-42, pp.345-353, 1996.
    [20] 黃冠維,“以灰關聯分析方法求解多屬性決策問題”,成功大學,碩士論文,2006.
    [21] Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, International Journal of Engineering Science, Vol.3, pp. 47-56, 1965.
    [22] Oliver, W.C., and Pharr, G.M., “An improved technique for determining hardness and lastic-modulus using load and displacement sensing indentation experiments.”,Journal of Materials Research, Vol.7, pp.1564-83, 1992.
    [23] W. C. Oliver and G. M. Pharr, J.Mater., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”,Journal of Materials Research,Vol.7.pp.1564-83, 1992.
    [24] M. Qasmi, P. Delobelle, F. Richard, and A. Bosseboeuf, “Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate”, Surface and Coatings Technology, Vol. 200, p4185-4194 , 2006.
    [25] S.Gangopadhyay, R. Acharya, A.K. Chattopadhyay, S. Paul , “Effect of substrate bias voltage on structural and mechanical properties of pulsed DC magnetron sputtered TiN–MoSx composite coatings”, Vacuum, Vol. 84, Pages 843-850, 2010.
    [26] 彭紹瑋,碳化鎢刀具披覆氮化鋯鎢硬質薄膜提升切削性能之研究,國立師範大學,碩士論文,2015.

    下載圖示
    QR CODE