簡易檢索 / 詳目顯示

研究生: 陳偉成
Wei-Cheng Chen
論文名稱: 硒三鐵羰基化合物與無機及有機試劑的合成與其反應性探討
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 136
中文關鍵詞: 金屬團簇物
英文關鍵詞: cluster
論文種類: 學術論文
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1.Se─Fe─CuX系統
    將[Et4N]2[SeFe3(CO)9]與CuX在不同條件比例下反應可成功合成出一系列新穎化合物 [Et4N]2[SeFe3(CO)9CuX] (X=Cl [Et4N]2[1a];Br [Et4N]2[1b] ;I [Et4N]2[1c])、[Et4N]2[SeFe3(CO)9Cu2X2] (X=Cl [Et4N]2[2a];Br [Et4N]2[2b])、[Et4N]2[{SeFe3(CO)9}2Cu4X2] (X=Cl [Et4N]2[3a];Br [Et4N]2[3b])和[Et4N]4[{SeFe3(CO)9Cu2Cl2}2] ([Et4N]4[4a]),並藉由DFT理論計算輔助,解釋IR吸收光譜、化合物相對穩定度與電化學上的氧化還原。

    2.Se─Fe─Cu/dipyridine系統
    將[Et4N]2[SeFe3(CO)9]加入[Cu(CH3CN)4][BF4]和不同dipyridine來源可成功自組裝得到一系列含羰基的新穎金屬團簇聚合物[SeFe3Cu2(tmdpy)2] (3)、[SeFe3(CO)9Cu2(dpy)3] (5)、[{(bpe)2(MeCN)2Cu}{SeFe3(CO)9Cu(bpe)}(MeCN)] (6)和[SeFe3Cu2(H2bpe)2.5] (7) (4,4′-trimethylene-dipyridine = tmdpy;4,4′-dipyridine = dpy;1,2-di(4–pyridine)ethylene = bpe;1,2-bis(4-pyridine)ethane = H2bpe)。

    3.Se─Fe─CuOAc系統
    將[Et4N]3[{SeFe3(CO)9Cu}2(─OAc)]與兩當量[Cu(CH3CN)4]BF4在冰浴反應5分鐘,可得到長鏈狀化合物[Et4N]3[{SeFe3(CO)9Cu2OAc}2(─OAc)] ([Et4N]3[2]),若[Et4N]3[{SeFe3(CO)9Cu}2(─OAc)]與[Cu(CH3CN)4]BF4和4,4´-dipyridine (dpy)同時反應則可得到4,4´-dipyridine取代掉OAc─ ligand當作橋接工具之化合物[Et4N]2[{SeFe3(CO)9Cu2OAc}2(─dpy)] ([Et4N]2[3])。

    1.Se-Fe-CuX system
    When the selenium-capped triiron carbonyl cluster [Et4N]2[SeFe3(CO)9] was treated with 1~3 equiv of CuX, CuX-bridged SeFe3 complexes [Et4N]2[SeFe3(CO)9CuX] (X = Cl, [Et4N]2[1a]; Br, [Et4N]2[1b]; I, [Et4N]2[1c]), Cu2X2-bridged SeFe3 clusters [Et4N]2[SeFe3(CO)9Cu2X2] (X = Cl, [Et4N]2[2a]; Br, [Et4N]2[2b]), Cu4X2-bridged di-SeFe3 clusters [Et4N]2[{SeFe3(CO)9}2Cu4X2] (X = Cl, [Et4N]2[3a]; Br, [PPh4]2[3b]), and Cu4Cl4-bridged di-SeFe3 clusters [Et4N]4[{SeFe3(CO)9Cu2Cl2}2] ([Et4N]4[4a]) were obtained, respectively, in good yields. The nature, formation, stepwise cluster expansion, and electrochemical properties of these CuX-, Cu2X2-, Cu4X2-, and Cu4Cl4-bridged mono- or di-SeFe3-based clusters are elucidated in detail by molecular calculations at the B3LYP level of the density functional theory in terms of the effects of selenium, iron, copper halides, and the size of the metal skeleton.

    2.Se-Fe-CuX/dipyridine
    When the selenium-capped triiron carbonyl cluster [Et4N]2[SeFe3(CO)9] was treated [Cu(CH3CN)4][BF4] and different dipyridine, self-assembly cluster polymers [SeFe3Cu2(tmdpy)2] (3), [SeFe3(CO)9Cu2(dpy)3] (5), [{(bpe)2(MeCN)2Cu}{SeFe3(CO)9Cu(bpe)}(MeCN)] (6), and [SeFe3Cu2(H2bpe)2.5] (7) (4,4′-trimethylene-dipyridine = tmdpy; 4,4′-dipyridine = dpy; 1,2-di(4–pyridine)ethylene = bpe; 1,2-bis(4-pyridine)ethane = H2bpe) were obtained, respectively.

    3.Se-Fe-CuOAc system
    When [Et4N]3[{SeFe3(CO)9Cu}2(─OAc)] was treated with 2 equiv [Cu(CH3CN)4][BF4] in THF in an ice/water bath, the OAc-bridged di-SeFe3 Cu2OAc cluster [Et4N]3[{SeFe3(CO)9Cu2OAc}2(─OAc)] ([Et4N]3[2]) was obtained. If [Et4N]3[{SeFe3(CO)9Cu}2(─OAc)] was treated with [Cu(CH3CN)4][BF4] and 4,4´-dipyridine (dpy) in THF in an ice/water bath, [Et4N]3[{SeFe3(CO)9Cu2OAc}2(─OAc)] ([Et4N]3[2]) was found to undego ligand-exchange reaction to give the corresponding dpy-bridged di-SeFe3 Cu2OAc cluster [Et4N]2[{SeFe3(CO)9Cu2OAc}2(─dpy)] ([Et4N]2[3])

    中文摘要………………………………………………………………………………..............I 英文摘要……………………………………………………………………………………….III 第一章 1.1 硒三鐵羰基化合物與鹵化亞銅的合成與其電化學及理論計算的探討……….. 摘要…………….……………..………………………………………………….. 1 1 1.2 前言………………………………………………………...…………………….. 2 1.3 結果與討論.……………………………………..………..................................… 3 1.3-1 [Et4N]2[SeFe3(CO)9]與ㄧ當量CuX (X = Cl、Br、I)的反應...……................… 3 1.3-2 [Et4N]2[SeFe3(CO)9]與兩當量CuX (X = Cl、Br)的反應........................................ 5 1.3-3 [Et4N]2[SeFe3(CO)9]與三當量CuX (X = Cl、Br)的反應........................…............ 6 1.3-4 [Et4N]2[SeFe3(CO)9]與兩當量CuCl在40 oC的反應……………........................... 9 1.3-5 化合物1-4的轉換............................................................................….....…..….. 11 1.3-6 化合物[Et4N]2[1a]、[Et4N]2[1b]、[Et4N]2[1c]、[Et4N]2[2a]、[Et4N]2[2b]、[Et4N]2[2a´]、[Et4N]2[3a]、[Et4N]2[3b]和[Et4N]2[4a]之X-ray結構上比較............. 12 1.3-7 DFT理論計算結果.................................................................................................. 14 1.3-8 計算路徑A-L的反應能ΔE…...……………….…….............................................. 16 1.3-9 在熱力學能量上聚合的可能性.....................................………………………… 17 1.3-10 討論2a─2c、3a─3c、4a─4c相對穩定度............................................................... 20 1.3-11 分子震動頻率討論..……….................................................................................... 21 1.3-12 電化學探討...........................................…............................................................... 24 1.4 結論….……………………….…...…..................................................................... 28 1.5 實驗…….................................................................................................................. 29 1.5-1 [Et4N]2[SeFe3(CO)9CuCl] ([Et4N]2[1a])之合成...................................................... 29 1.5-2 [Et4N]2[SeFe3(CO)9CuBr] ([Et4N]2[1b])之合成..................................................... 30 1.5-3 [Et4N]2[SeFe3(CO)9CuI] ([Et4N]2[1c])之合成........................................................ 30 1.5-4 [Et4N]2[SeFe3(CO)9Cu2Cl2] ([Et4N]2[2a])之合成................................................... 31 1.5-5 [Et4N]2[SeFe3(CO)9Cu2Br2] ([Et4N]2[2b])之合成................................................... 32 1.5-6 [Et4N]2[{SeFe3(CO)9}2Cu4Cl2] ([Et4N]2[3a])之合成.............................................. 32 1.5-7 [Et4N]2[{SeFe3(CO)9}2Cu4Br2] ([Et4N]2[3b])之合成............................................. 33 1.5-8 [Et4N]4[{SeFe3(CO)9(CuCl)2}2] ([Et4N]4[4a])之合成............................................ 34 1.5-9 [Et4N]2[1a]轉換到[Et4N]2[2a]................................................................................. 34 1.5-10 [Et4N]2[1b]轉換到[Et4N]2[2b]................................................................................ 34 1.5-11 [Et4N]2[2a]轉換到[Et4N]2[3a]................................................................................. 35 1.5-12 [Et4N]2[2b]轉換到[Et4N]2[3b]................................................................................ 35 1.5-13 [Et4N]2[1a]轉換到[Et4N]2[3a]................................................................................. 36 1.5-14 [Et4N]2[1b]轉換到[Et4N]2[3b]................................................................................ 36 1.5-15 [Et4N]2[2a]轉換到[Et4N]4[4a]................................................................................. 36 1.5-16 [Et4N]4[4a]轉換到[Et4N]2[3a]................................................................................. 37 1.5-17 [Et4N]2[1a]、[Et4N]2[1b]、[Et4N]2[1c]、[Et4N]2[2a]、[Et4N]2[2b]、[Et4N][2a’]、[Et4N]2[3a]、[PPh4]2[3b]和[Et4N]4[4a]的晶體結構解析....................................... 37 1.5-18 理論計算方法.......................................................................................................... 39 1.5-19 電化學方法.............................................................................................................. 40

    (1) (a) Lehn, J.-M.; Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vögtle, F. Comprehensive Supramolecular Chemistry; Pergamon: Oxford, U.K., 1996. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (c) Gianneschi, N. C.; Masar, III M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825. (d) Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127. (e) Selby, H. D.; Roland, B. K.; Zheng, Z. Acc. Chem. Res. 2003, 36, 933. (f) Lang, J.-P.; Ji, S.-J.; Xu, Q.-F.; Shen, Q.; Tatsumi, K. Coord. Chem. Rev. 2003, 241, 47. (g) Gabriel, J.-C. P. ; Boubekeur, K.; Uriel, S.; Batail, P. Chem. Rev. 2001, 101, 2037. (h) Bai, J.; Virovets, A. V.; Scheer, M. Science, 2003, 300, 781.
    (2) (a) Femoni, C.; Kaswalder, F.; Iapalucci, M. C.; Longoni, G.; Zacchini, S. Chem. Commun. 2006, 2135. (b) Bai, J.; Leiner, E.; Scheer, M. Angew. Chem., Int. Ed. 2002, 41, 783. (c) Bai, J.; Virovets, A. V.; Scheer, M. Angew. Chem., Int. Ed. 2002, 41, 1737. (d) Nakajima, T.; Ishiguro, A.; Wakatsuki, Y. Angew. Chem., Int. Ed. 2001, 40, 1066. (e) Shieh, M.; Hsu, M.-H.; Sheu, W.-S.; Jang, L.-F.; Lin, S.-F.; Chu, Y.-Y.; Miu, C.-Y.; Lai, Y.-W.; Liu, H.-L.; Her, J. L. Chem.–Eur. J. 2007, 13, 6605.
    (3) (a) Roof, L. C.; Kolis, J. W. Chem. Rev. 1993, 93, 1037. (b) Gysling, H. J. Coord. Chem. Rev. 1982, 42, 133. (c) Sekar, P.; Ibers, J. A. Inorg. Chem. 2002, 41, 450, and references therein. (d) Shriver, D. F.; Kaesz, H. D.; Adams, R. D. The Chemistry of Metal Cluster Complexes; VCH Publishers: New York, 1990. (e) Whitmire, K. H. Adv. Organomet. Chem. 1997, 42, 1. (f) Mathur, P. Adv. Organomet. Chem. 1997, 41, 243. (g) Shieh, M. J. Cluster Sci. 1999, 10, 3.
    (4) (a) Eichhofer, A.; Fenske, D.; Oetzel, J. O. Eur. J. Inorg. Chem. 2007, 74. (b) Nitschke, C.; Fenske, D.; Corrigan, J. F. Inorg. Chem. 2006, 45, 9394, and references therein.
    (5) (a) Shieh, M.; Liou, Y.; Hsu, M.-H.; Chen, R.-T.; Yeh, S.-J.; Peng, S.-M. Lee, G.-H. Angew. Chem. 2002, 114, 2490; Angew. Chem. Int. Ed. 2002, 41, 2384. (b) Shieh, M.; Liou, Y.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1993, 32, 2212. (c) Shieh, M.; Liou, Y.; Jeng, B.-W. Organometallics 1993, 12, 4926. (d) Shieh, M.; Sheu, C.-m.; Ho, L.-F.; Cherng, J.-J.; Jang, L.-F.; Ueng, C.-H.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1996, 35, 5504.
    (6) (a) Shieh, M.; Chen, P.-F.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1993, 32, 3389. (b) Shieh, M.; Tsai, Y.-C. Inorg. Chem. 1994, 33, 2303. (c) Shieh, M.; Shieh, M.-H.; Tsai, Y.-C.; Ueng, C.-H. Inorg. Chem. 1995, 34, 5088. (d) Shieh, M.; Tang, T.-F.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1995, 34, 2797. (e) Shieh, M.; Tsai, Y.-C.; Cherng, J.-J.; Shieh, M.-H.; Chen, H.-S.; Ueng, C.-H. Organometallics 1997, 16, 456. (f) Cherng, J.-J.; Tsai, Y.-C.; Ueng, C.-H.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Organometallics 1998, 17, 255. (g) Huang, K.-C.; Shieh, M.-H.; Jang, R.-J.; Peng, S.-M.; Lee, G.-H.; Shieh, M. Organometallics 1998, 17, 5202. (h) Shieh, M.; Chen, H.-S.; Chi, H.-H.; Ueng, C.-H. Inorg. Chem. 2000, 39, 5561. (i) Shieh, M.; Chen, H.-S.; Lai, Y.-W. Organometallics 2004, 23, 4018. (j) Lai, Y.-W.; Cherng, J.-J.; Sheu, W.-S.; Lee, G.-A.; Shieh, M. Organometallics 2006, 25, 184.
    (7) (a) Doescher, M. S.; Tour, J. M.; Rawlett, A. M.; Myrick, M. L. J. Phys. Chem. B 2001, 105, 105. (b) Hagenström, H.; Schneeweiss, M. A.; Kolb, D. M. Langmuir 1999, 15, 7802.
    (8) (a) Pfitzner, A. Chem. Eur. J. 2000, 6, 1891. (b) Dehnen, S.; Eichhöfer, A.; Fenske, D. Eur. J. Inorg. Chem. 2002, 279. (c) Jayasekera, B.; Brock, S. L.; Lo, A. Y. H.; Schurko, R. W.; Nazri, Z. A. Chem. Eur. J. 2005, 11, 3762. (d) Lazewski, J.; Neumann, H.; Parlinski, K. Phys. Rev. B 2004, 70, 195206. (e) Hamdadou, N.; Morsli, M.; Khelil, A.; Bernede, J. C. J. Phys. D: Appl. Phys. 2006, 39, 1042.
    (9) (a) Bachman, R. E.; Whitmire, K. H. Inorg. Chem. 1994, 33, 2527. (b) Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. M.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 4392. (c) Konchenko, S. N.; Virovets, A. V.; Varnek, V. A.; Tkachev, S. V.; Podberezskaya, N. V.; Maksakov, V. A. Zh. Strukt. Khim. 1996, 37, 337.
    (10) Bachman, R. E.; Whitmire, K. H.; Hal, J. van. Organometallics 1995, 14, 1792.
    (11) Albano, V. G.; Castellari, C.; Femoni, C.; Iapalucci, M. C.; Longoni, G.; Monari, M.; Rauccio, M.; Zacchini, S. Inorg. Chim. Acta. 1999, 291, 372.
    (12) Roof, L. C.; Smith, D. M.; Drake, G. W.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 337.
    (13) Poliakova, L. A.; Gubin, S. P.; Belyakova, O. A.; Zubavichus, Y. V.; Slovokhotov, Y. L. Organometallics 1997, 16, 4527.
    (14) Fischer, K.; Deck, W.; Schwarz, M.; Vahrenkamp, H. Chem. Ber. 1985, 118, 4926.
    (15) Beswick, M. A.; Lewis, J.; Raithby, P. R.; de Arellano, M. C. R. J. Chem. Soc., Dalton Trans. 1996, 4033.
    (16) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (c) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.
    (17) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
    (18) Wiberg, K. B. Tetrahedron 1968, 24, 1083.
    (19) (a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
    (20) (a) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. (b) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.
    (21) (a) Fukui, K. Theory of Orientation and Stereoselection; Springer-Verlag: Berlin, 1973, p 134. (b) Fukui, K. Science 1982, 218, 747.
    (22) Chattaraj, P. K. J. Phys. Chem. A 2001, 105, 511.
    (23) Pearson, R. G. Chemical Hardness-Applications from Molecules to Solids; Wiley-VCH: Weinheim, Germany, 1997.
    (24) (a) Yam, V. W. W.; Lee, W. K.; Lai, T. F. Organometallics 1993, 12, 2383. (b) X. Xue, X. S. Wang, R. G. Xiong, X. Z. You, B. F. Abrahams, C. M. Che, H. X. Ju, Angew. Chem. Int. Ed. 2002, 41, 2944.
    (25) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
    (26) Blessing, R. H. Acta Crystallogr. Sect. A 1995, 51, 33.
    (27) North A. C. T.; Philips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351.
    (28) Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen: Germany, 1997.
    (29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.04; Gaussian, Inc.: Wallingford, CT, 2004.
    (30) Reed, A. E.; Curtiss L. A.; Weinhold F. Chem. Rev. 1988, 88, 899.

    無法下載圖示 本全文未授權公開
    QR CODE