簡易檢索 / 詳目顯示

研究生: 柯炫任
Ko, Hsuan-Jen
論文名稱: 以多目標演化演算法求解動態電力調度之成本及汙染問題
A Multiobjective Evolutionary Algorithm for Dynamic Economic Emission Dispatch
指導教授: 蔣宗哲
Chiang, Tsung-Che
口試委員: 鄒慶士
Tsou, Ching-Shih
温育瑋
Wen, Yu-Wei
蔣宗哲
Chiang, Tsung-Che
口試日期: 2022/08/23
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 54
中文關鍵詞: 動態電力調度演化演算法多目標限制處理
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201580
論文種類: 學術論文
相關次數: 點閱:190下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在科技發達的社會中,人類對電力的依賴日漸增加。由於目前綠色能源之發展仍在進行,火力發電仍為電力供給的主要方法。動態電力調度之成本及汙染問題為有限制的多目標連續型最佳化問題,給定若干個發電機組資訊和一天二十四小時的電力需求,需求取每小時中各機組的發電量配置。發電配置必須滿足每小時的電力需求,也必須符合各發電機組的負載範圍及調降安全範圍;目標則為同時最小化發電成本和空污排放量。綜合上述,動態電力調度之成本及汙染問題為一具挑戰性之最佳化問題,且有實務應用價值,是非常值得研究的問題。本論文提出多目標差分演化演算法以求解動態電力調度之成本及汙染問題,針對演算法中的合法性修復、環境選擇、計算資源分配及突變選擇四項重要機制進行探究。我們以六組公開測試模型檢驗上述四項機制對求解效能之影響,實驗結果顯示本論文所使用之機制均有良好成效。最後,本論文之方法和十五個既有方法相比,展現優秀的求解能力。

    第一章 緒論 1 1.1 研究背景 1 1.2 問題定義 1 1.2.1 目標函式 1 1.2.2 問題限制 2 1.3 含有限制的多目標最佳化問題 3 1.4 柏拉圖凌越關係 (Pareto dominance) 4 1.5 演化演算法 (Evolutionary Algorithm) 5 1.6 論文架構及貢獻 7 第二章 文獻探討 8 2.1 交配與突變 8 2.2 環境選擇機制 9 2.3 限制處理機制 11 2.3.1 懲罰函式 (penalty function) 12 2.3.2 目標及限制分別比較 (separation of constraints and objectives) 13 2.3.3 限制式目標化 15 2.3.4 混合法 15 2.3.5 修復機制 15 2.4 參數控制 18 第三章 方法與步驟 20 3.1 演算法架構 20 3.2 編碼及族群初始化 22 3.3 個體修復法 22 3.4 鄰居關係與親代選擇 23 3.5 交配與突變 24 3.6 評估方法與環境選擇 25 3.7 動態資源分配 (Dynamic Resource Allocation, DRA) 26 3.8 突變策略的選擇 27 第四章 實驗設計 29 4.1 測試資料及實驗環境 29 4.2 效能指標 29 4.3 演算法參數設定 32 4.4 個體修復法之探討 32 4.5 多目標選擇機制之探討 34 4.6 聚合函式之探討 36 4.7 動態資源分配機制之探討 37 4.8 突變選擇策略之探討 40 4.8.1 動態策略選擇的效果 40 4.8.2 參數的影響 41 4.9 整體效能比較 42 4.9.1 測試資料 5-U 43 4.9.2 測試資料 6-U 44 4.9.3 測試資料 10-U 46 結論與未來方向 50 參考文獻 51

    [1] M. Basu, “Particle swarm optimization based goal-attainment method for dy-namic economic dispatch problem,” Electric Power Components and Systems, vol. 34, pp. 10151025, 2006.
    [2] D.C. Walters and G.B. Sheble, “Genetic algorithm solution of economic dis-patch with valve point loading,” IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 13251332, 1993.
    [3] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, “Push and pull search for solving constrained multi-objective optimization prob-lems,” Swarm and Evolutionary Computation, vol. 44, pp. 665679, 2019.
    [4] M. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II,” International Journal of Electrical Power & Energy Systems, vol. 30, pp. 140149, 2008.
    [5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-boective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182197, 2002. [NSGA-II]
    [6] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous searchspace,” Complex Systems, vol. 9, no. 2, pp. 115148, 1995.
    [7] R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, pp. 341–359, 1997.
    [8] X. Jiang, J. Zhou, H. Wang, and Y. Zhang, “Dynamic environmental economic dispatch using multiobjective differential evolution algorithm with expanded double selection and adaptive random restart,” International Journal of Electrical Power & Energy Systems, vol. 49, pp. 399–407, 2013. [MAMODE]
    [9] K. Mason, J. Duggan, and E. Howley, “Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants,” Neurocomputing, vol. 270, pp. 188–197, 2017. [PSO-AWL/PSO-GIDN]
    [10] K. Mason, J. Duggan, and E. Howley, “A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch,” Electrical Power and Energy Systems, vol. 100, pp. 201–221, 2018. [MONNDE]
    [11] C. X. Guo, J. P. Zhan, and Q. H. Wu, “Dynamic economic emission dispatch based on group search optimizer with multiple producers,” Electric Power Systems Research, vol. 86, pp. 8–16, 2012. [GSOMP]
    [12] P. K. Roy and S. Bhui, “A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch,” International Transactions on Electrical Energy Systems, vol. 26, pp. 49–78, 2016. [HCRO]
    [13] S. Qian, H. Wu, and G. Xu, “An improved particle swarm optimization with clone selection principle for dynamic economic emission dispatch,” Soft Computing, vol. 24, pp. 15249–15271, 2020. [PSOCS]
    [14] X. Shen, D. Zou , N. Duan, and Q. Zhang, “An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch,” Energy, vol. 186, 2019. [EFDE]
    [15] M. Elaiw, X. Xia, and A. M. Shehata, “Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with value-point effects,” Electric Power Systems Research, vol. 103, pp. 192–200, 2013. [SQP]
    [16] B. Qiao, J. Liu, and X. Hao, “A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems,” Applied Soft Computing, vol. 108, 2021. [NSDESa_LS-PDAD]
    [17] H. Zhang, D. Yue, X. Xie, S. Hu, and S. Weng, “Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch,” Applied Soft Computing, vol. 34, pp. 312–323, 2015. [MOHDE-SAT]
    [18] Z. Zhu, J. Wang, and M. H. Baloch, “Dynamic economic emission dispatch using modified NSGA-II,” International Transactions on Electrical Energy Systems, vol. 26, pp. 2684–2698, 2016. [MNSGA-II]
    [19] H. Li and Q. Zhang, “Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 284–302, 2009. [MOEA/D-DE]
    [20] Y. Zhu, B. Qiao, Y. Dong, B. Qu, and D. Wu, “Multiobjective dynamic economic emission dispatch using evolutionary algorithm based on decomposition,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 14, pp. 1323–1333, 2019. [IMOEA/D-CH]
    [21] L. Li, Z. Liu, M. Tseng, S. Zheng, and M. K. Lim, “Improved tunicate swarm algorithm: solving the dynamic economic emission dispatch problems,” Applied Soft Computing, vol. 108, 2021. [ITSA]
    [22] Z. Fan, W. Li, X. Cai, Y. Fang, J. Lu, and C. Wei, “A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems,” IEEE Congress on Evolutionary Computation, pp. 209–216, 2017
    [23] N. Pandit, A. Tripathi, S. Tapaswi, and M. Pandit, “An improved bacterial foraging algorithm for combined static/dynamic,” Applied Soft Computing, vol. 12, pp. 3500–3513, 2012. [IBFA]
    [24] A. Homaifar, C. X. Qi, and S. H. Lai, “Constrained optimization via genetic algorithms,” Simulation, vol. 62, no. 4, pp. 242–253, 1994.
    [25] J. A. Joines and C. R. Houck, “On the use of nonstationary penalty functions to solve nonlinear constrained optimization problems with GA’s,” Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, 1994, pp. 579–584.
    [26] J. C. Bean and A. B. Hadj-Alouane, “A dual genetic algorithm for bounded integer programs,” 1993.
    [27] T. Back, F. Hoffmeister, and H. Schwefel, “A survey of evolution strategies,” Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2–9, 1991.
    [28] T. Takahama and S. Sakai, “Constrained optimization by  constrained particle swarm optimizer with -level control,” Soft Computing as Transdisciplinary Science and Technology. Springer, pp. 1019–1029, 2005.
    [29] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 284–294, 2000.
    [30] Z. Cai and Y. Wang, “A multiobjective optimization based evolutionary algorithm for constrained optimization,”IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 658–675, 2006.
    [31] T. Ray, H. K. Singh, A. Isaacs, and W. Smith, “In- feasibility driven evolutionary algorithm for constrained optimization,”Constraint-handling in Evolutionary Optimization, pp. 145–165, 2009.
    [32] Y. Wang, Z. Cai, Y. Zhou, and W. Zeng, “An adaptive tradeoff model for constrained evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 80–92, 2008.
    [33] B.Y. Qu, P.N. Suganthan, “Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods,“ Engineering Optimization, vol. 43, no. 4, pp. 403–416, 2011.
    [34] T. Niknam, F. Golestaneh, and M. S. Sadeghi, “-multiobjective teaching-learning-based optimization for dynamic economic emission dispatch,” IEEE System Journal, vol. 6, no. 2, 2012.
    [35] Z. Li, D. Zou, and Z. Kong, “A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss,” Engineering Applications of Artificial Intelligence, vol. 84, pp. 18–40, 2019. [NEHS]
    [36] N. Hitomi and D. Selva, “A classification and comparison of credit assignment strategies in multiobjective adaptive operator selection,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 2, 2017
    [37] Q. Zhang, W. Liu, and H. Li, “The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances,” IEEE Congress on Evolutionary Computation, pp. 203–208, 2009. [MOEA/D-DRA]
    [38] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,” Journal of Computer Science and Informatics, vol. 26, pp. 30–45, 1996.
    [39] L.-L. Li, Q. Shen, M.-L. Tseng, and S. Luo, “Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm,” Journal of Cleaner Production, vol. 316, 2021.
    [40] H. Liang, Y. Liu, F. Li, and Y. Shen, “Dynamic economic/emission dispatch including PEVs for peak shaving and valley filling,” IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2880–2890, 2018.

    下載圖示
    QR CODE