簡易檢索 / 詳目顯示

研究生: 曾士誠
Shih-Chen Tseng
論文名稱: 頭戴式眼動儀之頭動補償探討
An approach of head Movement Compensation for wearable eye tracker
指導教授: 黃奇武
Huang, Chi-Wu
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 頭戴式眼動儀角膜亮點光軸視軸2-D Mapping3-D Modeling
英文關鍵詞: Wearable eye tracker, Glint, Optic axis, Visual axis, 2-D mapping, 3-D modeling
DOI URL: https://doi.org/10.6345/NTNU202205238
論文種類: 學術論文
相關次數: 點閱:264下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出之Rotation可補償2-D Mapping的頭動偏差,還原至Calibration後之預估凝視點(POG),可免去使用者需要頭部固定在支架的困擾。

    相關文獻表示,不管是2-D多項式映射或是眼睛3-D Modeling預估方法,其資料大多採用紅外線光源以及所產生之眼角膜反射點特徵,2-D Mapping選用數學多項式計算預估POG,而眼睛3-D Modeling則是找出人眼之視軸方向,視軸與螢幕之交點即為POG。

    文獻說明進行預估POG操作前,2-D Mapping需要做簡單的Calibration,請使用者凝視預設的已知點,所得之資料用來計算多項式函數之係數。3-D眼睛模型需要購買昂貴的Stereo-camera,以及取得攝影機系統相關Calibration參數,或是求解眼睛模型之向量,尤其在設定攝影機系統部分,有的使用另一組輔助廣角Stereo-camera,並且搭配3-D掃描儀進行Calibration,相較於2-D Mapping之Calibration步驟,使用者操作會複雜許多。

    本研究是使用兩臺PS3攝影機,進而製作一套低於100美元頭戴式眼動儀,軟體部分採用免費的開放原始碼,使用者可以精確地完成目標鍵盤輸入(Eye Controlled Typing)之操作,用於癱瘓人士的溝通是最為廣泛的應用,相較於昂貴的市售眼動儀(成本大於10000美元),本研究眼動儀之精確度可滿足實驗和應用的需求,在硬體成本部分,其優勢顯而易見。

    本研究團隊使用自製之頭戴式眼動儀,基於2-D Mapping進行心理學實驗之應用,例如以凝視熱區(Hot-zone)、感興趣區域(Region of Interest)、凝視軌跡(Scan- path),並應用在目標螢幕鍵盤輸入,希望未來研究3-D Modeling之POG預估,有效地應用於實際環境。

    This paper proposed an approach, by using a 3-D rotation matrix, the errors caused by head movements in 2-D mapping, which mapped the glint-pupil difference vector obtained from the eye image on to a screen for estimating the Point of Gaze (POG), could be kept under a predefined accuracy even the head was moving away from the original calibration position. Hence, it could free the tracker user from uncomfortably confined his head in a chin rest during eye tracking.
    By the analyze of recent eye tracking techniques, either 2-D polynomial mapping or 3-D modeling basically was tracking the glints of eye images, a bright reflected point of the light source from the eye surface, and the rapidly moving pupil, to find the POG. 2-D mapping used the selected polynomial functions to compute the POG on screen as mentioned above while 3-D modeling is actually measured as well as computed the pupil center and the glint in 3-D position such that the visual axis of the eye could be reconstructed; POG was then found when visual axis was intersecting on a screen or any other subject in the real world
    Before eye tracking started, a simple calibration procedure was performed in 2-D mapping by using several predefined points on screen to estimate the coefficients of the selected polynomial functions to be used during tracking while in 3-D models, the calibrations are complicated depending on different system configurations, such as Mono-camera measurements, stereo vision measurements. They were also expensive because some models needed additional auxiliary wide angle Stereo-cameras, and 3-D digitizer for system calibration.
    This approach used two PS3 cameras, one for eye and one for scene, with open source software to construct a low cost (under $100) wearable eye tracker capable of performing eye-controlled typing with quite satisfactory accuracy. Eye-controlled typing is one of the important Human Computer Interface (HCI) applications, especially for disable people. Currently, some commercial wearable eye trackers are available with the price at least over $10,000.
    The homemade eye tracker in our laboratory was mainly based on 2-D tracking with some self-developed application software, such as Scan-path Trace, Hot-zone Display, Interest-region Search, and Eye-controlled Typing. In addition to modify 2-D mapping with rotation matrix, the 3-D based tracking is planned to be developed and hopefully is capable of working in the real world tracking environment instead of screen only for wider applications.

    目錄       圖 目 錄... IX 表 目 錄... XV 第一章 緒論 1 1.1 研究背景 1 1.2 眼動儀的起源 3 1.3 市售眼動儀介紹 6 1.4 自製頭戴式實景螢幕眼動儀[22] 9 1.5 頭戴式眼動儀操作和追蹤原理 11 第二章 2-D Mapping 與3-D Modeling技術探討 14 2.1 2-D Mapping技術[5] 14 2.2 3-D Modeling之Mono-Camera技術 19 2.3 Stereo-camera預估POG[21] 26 2.4 類神經網路之3-D技術 32 2.5 2-D Mapping與3-D Modeling比較 33 2.6 本論文對Calibration與POG預估之定義 35 第三章 Rotation Adjusted 2-D Mapping 37 3.1 2-D Mapping之眼動追蹤 40 3.2 Rotation adjusted 2-D mapping 42 3.3 2-D與3-D之互換 43 3.4 求3-D向量之反旋轉量作頭動補償 45 3.5 T2反轉至PL1成向量T1 47 3.6 本研究與文獻方法比較說明 48 3.7 系統軟體設計 49 第四章 頭動精確度實驗 51 4.1 實驗軟硬體架構 51 4.2 精確度實驗 53 4.3 實驗操作流程與項目 54 4.4 系統取樣率和CPU計算量 58 4.5 操作介面說明 59 4.6 實驗誤差分析圖 62 4.7 10次實驗誤差分析圖 72 4.8 實驗距離誤差圖 73 4.9 實驗結果探討 74 第五章 結論與未來展望 75 5.1 未來展望 75 參 考 文 獻 77 附錄A. 實驗結果數據 (1) 81 附錄B. 實驗結果數據 (2) 84 附錄C. 實驗結果數據 (3) 87 附錄D. 實驗結果數據 (4) 90 附錄E. 實驗結果數據 (5) 93 附錄F. 實驗結果數據 (6) 96 附錄G. 實驗結果數據 (7) 99 附錄H. 實驗結果數據 (8) 102 附錄I. 實驗結果數據 (9) 105 附錄J. 實驗結果數據 (10) 108 自傳............. .......111 學術成就... 112

    [1] Chi-Wu Huang; Shih-Chen Tseng; Zong-Sian Jiang; Chun-Wei Hu, "Projective mapping compensation for the head movement during eye tracking," Consumer Electronics - Taiwan (ICCE-TW), 2014 IEEE International Conference on , vol., no., pp.131,132, 26-28 May 2014
    [2] Crane, Hewitt D., and Carroll M. Steele. "Generation-V dual-Purkinje-image eyetracker." Applied Optics 24.4 (1985): 527-537.
    [3] George Wolberg. DIGITAL IMAGE WARPING–abstract of Digital Image Warping. IEEE Computer Society Press 10 Octorber 1996
    [4] Guestrin, E.D.; Eizenman, E., "General theory of remote gaze estimation using the pupil center and corneal reflections," Biomedical Engineering, IEEE Transactions on , vol.53, no.6, pp.1124,1133, June 2006
    [5] Hansen, D.W.; Qiang Ji, "In the Eye of the Beholder: A Survey of Models for Eyes and Gaze," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.32, no.3, pp.478,500, March 2010
    [6] Huey, Edmund. The Psychology and Pedagogy of Reading (Reprint). MIT Press 1968 (originally published 1908)
    [7] Hutchinson, T.E.; White, K.P., Jr.; Martin, Worthy N.; Reichert, K.C.; Frey, L.A., "Human-computer interaction using eye-gaze input." Systems, Man and Cybernetics, IEEE Transactions on , vol.19, no.6, pp. 1527, 1534, Nov/Dec 1989
    [8] Heckbert, Paul. "Projective mappings for image warping." Image-Based Modeling and Rendering (1999): 15-869.
    [9] Hiley, J.B.; Redekopp, A.H.; Fazel-Rezai, R., "A Low Cost Human Computer Interface based on Eye Tracking," Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE , vol., no., pp.3226,3229, Aug. 30 2006-Sept. 3 2006
    [10] Juan J. Cerrolaza, Arantxa Villanueva, and Rafael Cabeza. 2012. Study of Polynomial Mapping Functions in Video-Oculography Eye Trackers. ACM Trans. Comput.-Hum. Interact. 19, 2, Article 10 (July 2012), 25 pages.

    [11] Kai Han; Xuan Wang; Zili Zhang; Hainan Zhao, "A novel remote eye gaze tracking approach with dynamic calibration," Multimedia Signal Processing (MMSP), 2013 IEEE 15th International Workshop on , vol., no., pp.111,116, Sept. 30 2013-Oct. 2 2013
    [12] Lee, Ji Woo, et al. "3D gaze tracking method using Purkinje images on eye optical model and pupil." Optics and Lasers in Engineering 50.5 (2012): 736-751.

    [13] Lee, Ji Woo, Hwan Heo, and Kang Ryoung Park. "A novel gaze tracking method based on the generation of virtual calibration points." Sensors 13.8 (2013): 10802-10822.

    [14] Mantiuk, Radosław, et al. Do-it-yourself eye tracker: Low-cost pupil-based eye tracker for computer graphics applications. Springer Berlin Heidelberg, 2012.
    [15] Ramdane-Cherif, Z.; Nait-Ali, A, "An Adaptive Algorithm for Eye-Gaze-Tracking-Device Calibration," Instrumentation and Measurement, IEEE Transactions on , vol.57, no.4, pp. 716, 723, April 2008
    [16] Sheng-Wen Shih; Jin Liu, "A novel approach to 3-D gaze tracking using Stereo-cameras," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on , vol.34, no.1, pp.234,245, Feb. 2004
    [17]Sabes, Philip N. "Linear Algebraic Equations, SVD, and the Pseudo-Inverse."San Francisco, Oct (2001).
    [18]Valenti, R.; Sebe, N.; Gevers, T., "Combining Head Pose and Eye Location Information for Gaze Estimation," Image Processing, IEEE Transactions on , vol.21, no.2, pp.802,815, Feb. 2012
    [19] Yannjy Yang and Chih-Chien Wang, "Trend of Using Eye Tracking Technology in Business Research" Journal of Economics, Business and Management vol. 3, no. 4, pp. 447-451, 2015.
    [20] Yoo, D.H.; Chung, M.J. A novel non-intrusive eye gaze estimation using cross-ratio under largehead motion. Comput. Vis. Image Underst. 2005, 98, 25–51

    [21] Z. Zhu and Q. Ji, “Novel Eye Gaze Tracking Techniques under Natural Head Movement,” IEEE Trans. Biomedical Eng., vol. 54,no. 12, pp. 2246-2260, Dec. 2007.
    [22] 江宗憲,低成本高速眼動儀之建構。臺灣師範大學應用電子研究所,碩士論文,2013。
    [23] http://www.aforgenet.com/
    [24] http://www.tobii.com/en/eye-tracking-research/global/products/
    [25] http://web.ntnu.edu.tw/~696010077/
    [26] http://www.labbookpages.co.uk/software/imgProc/blobDetection.html
    [27] http://en.wikipedia.org/wiki/Singular_value_decomposition
    [28] http://codelaboratories.com/home/
    [29] http://www.diku.dk/~panic/eyegaze/node9.html
    [30] http://www.tobii.com/en/eye-experience/
    [31] http://www.tobii.com/
    [32] http://www.tobii.com/assistive-technology/global/hidden-pages/rehab-sci/
    [33] http://www.ime.usp.br/~hitoshi/framerate/node2.html
    [34] http://www.howtodegrid.com/dconcept.htm
    [35] http://en.wikipedia.org/wiki/Eye_tracking

    下載圖示
    QR CODE