簡易檢索 / 詳目顯示

研究生: 游賀培
He-pei You
論文名稱: 中草藥抑制細胞興奮性毒殺以治療第十七型脊髓共濟失調症
Chinese herbal medicine as a new perspective for the treatment of spinocerebellar ataxia type 17 via inhibition of excitotoxicity
指導教授: 吳忠信
Wu, Chung-Hsin
林榮耀
Lin, Jung-Yaw
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 73
中文關鍵詞: 第十七型小腦萎縮症以麩胺酸誘導之興奮性毒殺SH-SY5Y 細胞細胞凋亡
英文關鍵詞: Spinocerebellar ataxia type 17, glutamate-induced excitotoxicity, SH-SY5Y cell, apoptosis
論文種類: 學術論文
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在神經退化性疾病中過量麩胺酸誘導受器活化與神經細胞損傷具有關聯性,從過去文獻中發現在小腦脊髓萎縮症 (Spinocerebellar ataxia, SCA) 細胞模式中,當活化麩胺酸受器會使得胞外鈣離子大量流入細胞質中,影響粒線體致使其功能損傷,進而誘發細胞凋亡路徑,引發細胞死亡。其中 SCA17 其之發病機制為 TATA 結合蛋白 (TBP) 中多麩醯胺酸 (>42 glutamines) 擴增,無法有效與 DNA 結合,並與轉錄因子蛋白質結合導致轉錄活性受到抑制,細胞內蛋白質異常聚集,產生細胞壓力,最後引發細胞死亡;此外,亦發現鈣離子有大量流入細胞內的情況。本研究的目的篩選出對於神經退化性疾病具有改善作用之中草藥及其成分。實驗以 SH-SY5Y 神經母細胞瘤細胞為細胞模式,篩選各種中草材及其成分對於麩胺酸誘導細胞產生興奮性毒殺是否具有改善作用。以 MTT 和流式細胞儀分析方法,我們發現 NH043-1 有效降低麩胺酸誘導所造成的細胞死亡;從西方墨點法中,觀察 NH043-1 可以降低麩胺酸誘導六小時之後 Bax, Calpain-2 和 SBDPs 的表現量而 Bcl-2 的表現量有上升的趨勢;二十四小時之後cleaved-PARP, cleaved-caspase-3 與 cleaved-caspase-9 的表現量有降低的趨勢。以 CL 冷光偵測儀,觀察 NH043-1 可以有效降低細胞內的自由基含量。利用流式細胞儀檢測粒線體膜電位,發現 NH043-1 可以提升粒線體膜電位。在誘導 nTBP/Q79-EGFP 融合蛋白表現的 SCA17細胞模式上,NH043-1 可以增加細胞的存活率以及 cleaved caspase-9, cleaved caspase-3 與cleaved PARP的表現量有降低的趨勢。在西方墨點法和 Dot-blot 方法,觀察 NH043-1 可以有效降低 TBP 蛋白質的異常聚集。在動物實驗部分使用 8 周大的 SCA17 轉殖基因老鼠從第九週開始注射 NH043-1,從 Rotarod assay 實驗發現在第 16, 18 及 20 周能夠有效延長其在 rotarod 上的時間,在 footprint assay 實驗上也改善步行缺失,並且在實驗小鼠小腦組織內有缺陷的 TBP 蛋白質的異常聚集和cleaved-caspase-3 表現量都有減緩。據以上的結果,NH043-1 可以改善麩胺酸誘導所造成的細胞死亡,具有治療 SCA17 之潛力。

    Excessive stimulation of glutamate induces neuronal damage through receptor-mediated excitotoxicity, which is thought to be involved in chronic neurodegenerative disorders. Several studies indicated that calcium influx into the cytoplasm in SCA transgenic cell by activation of glutamate receptors and increased toxic cascades, including the disturbance of mitochondrial function and the enhancement of apoptotic pathway. Spinocerebellar ataxia (SCA) type 17, a neurodegenerative disorder, is caused by polyglutamine (polyQ) expansion (>42 glutamines) in the basal transcription factor TATA binding protein (TBP). The polyQ expansion interferes, increases protein aggregation and results in cell death. It is believed that Chinese herbal medicines (CHMs) prescription might be a new perspective for the treatment of neurodegenerative disorder. Accordingly, we proposed to identify effective compounds of CHMs protecting cells from glutamate-induced excitotoxicity in human neuroblastoma SH-SY5Y cells. We found that NH043-1 protected human neuroblastoma SH-SY5Y cells from cell death induced by glutamate-mediated excitotoxicity, attenuated the production of intracellular reactive oxygen species (ROS), and decreased the expression of Calpain-2, SBDPs and Bax/Bcl-2 ratio for 6 h, and the expressions of cleaved-caspase-9, cleaved-caspase-3 and cleaved-PARP for 24 h. NH043-1 also blocked the decrease of mitochondrial membrane potential by MSG. In nTBP/Q79-EGFP cell model, NH043-1 also showed the remarkably protective activity against the neuronal cell death and decreased the expression of cleaved-caspase-9, cleaved-caspase-3, and cleaved-PARP for 24 h. NH043-1 also inhibited the protein aggregation. In SCA17 animal model, NH043-1-treatment SCA17 mice performed better than Saline-treatment SCA17 mice on an accelerating rota-rod and footprint experiments in 5 months. NH043-1 attenuated expression of TBP protein aggregation and cleaved-caspase-3 in cerebella of SCA17 mice. The results suggest that NH043-1 could be a potential medicine in the treatment of neurodegenerative disorders (SCA17) through inhibition of glutamate-induced apoptosis via mitochondria pathway.

    目錄 目錄 I 中文摘要 IV Abstract VI Figure lists VIII 1. Introduction 1 2. Research aims 8 3. Material and methods 9 3.1 Materials 9 3.2 Cell culture 10 3.3 MTT assay 10 3.4 Flow cytometric measurement of apoptotic cells 12 3.5 Western blotting 13 3.6 Measuring reactive oxygen species (ROS) activity in vitro by Chemiluminescence (CL) 19 3.7 Measuring mitochondrial membrane potential by flow cytometry 19 3.8 Dot-blot filter retardation assay 20 3.9 Animal model 22 3.9.1 Motor behavioral assessment 22 3.9.2 Footprint patterns analysis 23 3.9.3 Western blot analysis of aggregated TBP and cleaved caspase-3 protein in the cerebellum of tested mice 24 4. Results 26 4.1 NH043-1 effectively protects SH-SY5Y cells against MSG-induced excitotoxicity 26 4.2 NH043-1 attenuates the apoptosis of SH-SY5Y cells induced by MSG 27 4.3 NH043-1 decreases the expressions of Calpain-2 and SBDPs in SH-SY5Y cells treated with MSG 28 4.4 NH043-1 decreases the expressions of Bax, but increased Bcl-2 in SH-SY5Y cells treated with MSG 29 4.5 NH043-1 inhibits the expressions of caspase family proteins mediated by MSG 30 4.6 NH043-1 inhibits the intracellular ROS induced by MSG 31 4.7 NH043-1 blocks the decrease of mitochondrial membrane potential (MMP) mediated by MSG 32 4.8 NH043-1 effectively increases cell viability against Dox-induced nTBP/Q79-EGFP cells 32 4.9 NH043-1 inhibits the expression of caspase family protein mediated by Dox-induced nTBP/Q79-EGFP cells 33 4.10 Effect of NH043-1 on polyQ protein aggregation by Dox-induced nTBP/Q36-EGFP and nTBP/Q79-EGFP cells 34 4.11 NH043-1 ameliorates the neurological behavior of SCA17 transgenic mice 35 4.12 NH043-1 attenuates polyQ protein aggregation and cleaved-caspase-3 protein in cerebella of SCA17 transgenic mice 36 5. Discussion 37 6. References 42 7. Figures 56 8. Table 72 9. Supplementary figure 73

    1. Abramov AY, Duchen MR (2008) Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochimica et biophysica acta 1777:953-964.
    2. Ajayi A, Yu X, Lindberg S, Langel U, Strom AL (2012) Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC neuroscience 13:86-92.
    3. Anderton RS, Meloni BP, Mastaglia FL, Greene WK, Boulos S (2011) Survival of motor neuron protein over-expression prevents calpain-mediated cleavage and activation of procaspase-3 in differentiated human SH-SY5Y cells. Neuroscience 181:226-233.
    4. Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cellular and molecular life sciences: CMLS 61:657-668.
    5. Brustovetsky T, Bolshakov A, Brustovetsky N (2010) Calpain activation and Na+/Ca2+ exchanger degradation occur downstream of calcium deregulation in hippocampal neurons exposed to excitotoxic glutamate. Journal of neuroscience research 88:1317-1328.
    6. Burke KA, Yates EA, Legleiter J (2013) Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Frontiers in neurology 4:17.
    7. Carlson KM, Andresen JM, Orr HT (2009) Emerging pathogenic pathways in the spinocerebellar ataxias. Current opinion in genetics & development 19:247-253.
    8. Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM (2011) Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. Journal of neurochemistry 118:288-303.
    9. Chen DH, Cimino PJ, Ranum LP, Zoghbi HY, Yabe I, Schut L, Margolis RL, Lipe HP, Feleke A, Matsushita M, Wolff J, Morgan C, Lau D, Fernandez M, Sasaki H, Raskind WH, Bird TD (2005) The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology 64:1258-1260.
    10. Chen T, Fei F, Jiang XF, Zhang L, Qu Y, Huo K, Fei Z (2012) Down-regulation of Homer1b/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons. Free radical biology & medicine 52:208-217.
    11. Clausen A, McClanahan T, Ji SG, Weiss JH (2013) Mechanisms of rapid reactive oxygen species generation in response to cytosolic Ca2+) or Zn(2+) loads in cortical neurons. PloS one 8:e83347.
    12. Cui W, Hu S, Chan HH, Luo J, Li W, Mak S, Choi TC, Rong J, Carlier PR, Han Y (2013) Bis(12)-hupyridone, a novel acetylcholinesterase inhibitor, protects against glutamate-induced neuronal excitotoxicity via activating alpha7 nicotinic acetylcholine receptor/phosphoinositide 3-kinase/Akt cascade. Chemico-biological interactions 203:365-370.
    13. Dargusch R, Piasecki D, Tan S, Liu Y, Schubert D (2001) The role of Bax in glutamate-induced nerve cell death. Journal of neurochemistry 76:295-301.
    14. Delgado-Rubin de Celix A, Chowen JA, Argente J, Frago LM (2006) Growth hormone releasing peptide-6 acts as a survival factor in glutamate-induced excitotoxicity. Journal of neurochemistry 99:839-849.
    15. Di X, Yan J, Zhao Y, Zhang J, Shi Z, Chang Y, Zhao B (2010) L-theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway. Neuroscience 168:778-786.
    16. Dick KA, Ikeda Y, Day JW, Ranum LP (2012) Spinocerebellar ataxia type 5. Handbook of clinical neurology 103:451-459.
    17. Duchen MR (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. European journal of physiology 464:111-121.
    18. Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain. 129:1357-1370.
    19. Evert BO, Wullner U, Schulz JB, Weller M, Groscurth P, Trottier Y, Brice A, Klockgether T (1999) High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells. Human molecular genetics 8:1169-1176.
    20. Friedman MJ, Li S, Li XJ (2009) Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. The Journal of biological chemistry 284:27944-27951
    21. Friedman MJ, Wang CE, Li XJ, Li S (2008) Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. The Journal of biological chemistry 283:8283-8290.
    22. Gao M, Zhang WC, Liu QS, Hu JJ, Liu GT, Du GH (2008) Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. European journal of pharmacology 591:73-79.
    23. Ghosh T, Pandey N, Maitra A, Brahmachari SK, Pillai B (2007) A role for voltage-dependent anion channel Vdac1 in polyglutamine-mediated neuronal cell death. PloS one 2:e1170.
    24. Gostout B, Liu Q, Sommer SS (1993) "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. American journal of human genetics 52:1182-1190.
    25. Henshall, DC. (2007) Apoptosis signaling pathways in seizure-induced neuronal death and epilepsy. Biochem Soc Trans. 35(2):421-423.
    26. Hirashima Y, Kurimoto M, Nogami K, Endo S, Saitoh M, Ohtani O, Nagata T, Muraguchi A, Takaku A (1999) Correlation of glutamate-induced apoptosis with caspase activities in cultured rat cerebral cortical neurons. Brain Res 849:109-118.
    27. Huang S, Ling JJ, Yang S, Li XJ, Li S (2011) Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain : a journal of neurology 134:1943-1958.
    28. Ishikawa K, Ishiguro T, Takahashi M, Sato N, Amino T, Niimi Y, Mizusawa H (2009) Molecular genetic approach to spinocerebellar ataxias. Clinical neurology 49:907-909.
    29. Jang JY, Kim HN, Kim YR, Choi YW, Choi YH, Lee JH, Shin HK, Choi BT. Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons (2013) J Ethnopharmacol. 145(1):261-268.
    30. Kasumu A, Bezprozvanny I (2012) Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias. Cerebellum 11:630-639.
    31. Kim S, Nollen EA, Kitagawa K, Bindokas VP, Morimoto RI (2002) Polyglutamine protein aggregates are dynamic. Nature cell biology 4:826-831.
    32. Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. Cerebellum 4:62-73.
    33. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Human molecular genetics 8:2047-2053.
    34. Kristal BS, Dubinsky JM (1997) Mitochondrial permeability transition in the central nervous system: induction by calcium cycling-dependent and -independent pathways. Journal of neurochemistry 69:524-538.
    35. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annual review of physiology 60:619-642.
    36. Lai TW, Zhang S, Wang YT (2013) Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Progress in neurobiology.
    37. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Archiv : European journal of physiology 460:525-542.Lee, L. C., et al. (2009). "Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis." Clin Chim Acta 400(1-2): 56-62.
    38. Li J, O W, Li W, Jiang ZG, Ghanbari HA (2013) Oxidative stress and neurodegenerative disorders. International journal of molecular sciences 14:24438-24475.
    39. Lee, L. C., et al. (2009). "Altered expression of HSPA5, HSPA8 and PARK7 in spinocerebellar ataxia type 17 identified by 2-dimensional fluorescence difference in gel electrophoresis." Clin Chim Acta 400(1-2): 56-62.
    40. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787-795.
    41. Liu X, Zhu XZ (1999) Roles of p53, c-Myc, Bcl-2, Bax and caspases in glutamate-induced neuronal apoptosis and the possible neuroprotective mechanism of basic fibroblast growth factor. Brain research Molecular brain research 71:210-216.
    42. Ma S, Liu H, Jiao H, Wang L, Chen L, Liang J, Zhao M, Zhang X (2012) Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC 12 cells via inhibition of ROS generation and Ca2+ influx. Neurotoxicology 33:59-69.
    43. Margolis RL, O'Hearn E, Holmes SE, Srivastava AK, Mukherji M, Sinha KK (1993) Spinocerebellar Ataxia Type 12. Gene Reviews
    44. Matilla-Duenas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P (2010) Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum 9:148-166.
    45. Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature genetics 26:191-194.
    46. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Annals of the New York Academy of Sciences 1144:97-112.
    47. McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. The Biochemical journal 367:541-548.
    48. Miao Y, Dong LD, Chen J, Hu XC, Yang XL, Wang Z (2012) Involvement of calpain/p35-p25/Cdk5/NMDAR signaling pathway in glutamate-induced neurotoxicity in cultured rat retinal neurons. PloS one 7:e42318.
    49. Misceo D, Fannemel M, Baroy T, Roberto R, Tvedt B, Jaeger T, Bryn V, Stromme P, Frengen E (2009) SCA27 caused by a chromosome translocation: further delineation of the phenotype. Neurogenetics 10:371-374.
    50. Mutsuddi M, Rebay I (2005) Molecular genetics of spinocerebellar ataxia type 8 (SCA8). RNA biology 2:49-52.
    51. Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human molecular genetics 10:1441-1448.
    52. Orr HT (2012) Cell biology of spinocerebellar ataxia. The Journal of cell biology 197:167-177.
    53. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annual review of neuroscience 30:575-621.
    54. Paulson H (2009) The spinocerebellar ataxias. J Neuroophthalmol 29(3):227-237.
    55. Pfeiffer A, Jaeckel M, Lewerenz J, Noack R, Pouya A, Schacht T, Hoffmann C, Winter J, Schweiger S, Schafer MK, Methner A (2013) Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress. British journal of pharmacology.
    56. Pivovarova NB, Stanika RI, Kazanina G, Villanueva I, Andrews SB (2013) The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration. Journal of neurochemistry.
    57. Popiel HA, Nagai Y, Onodera O, Inui T, Fujikake N, Urade Y, Strittmatter WJ, Burke JR, Ichikawa A, Toda T (2004) Disruption of the toxic conformation of the expanded polyglutamine stretch leads to suppression of aggregate formation and cytotoxicity. Biochemical and biophysical research communications 317:1200-1206.
    58. Proctor CJ, Tangeman PJ, Ardley HC (2010) Modelling the role of UCH-L1 on protein aggregation in age-related neurodegeneration. PloS one 5:e13175.
    59. Rana S. Moubarak VJY, Cédric Artus, Aïda Bouharrour, Peter A. Greer, Josiane Menissier-de Murcia and Santos A. Susin, (2007) Sequential Activation of Poly(ADP-Ribose) Polymerase 1, Calpains, and Bax Is Essential in Apoptosis-Inducing Factor-Mediated Programmed Necrosis. Mol Cell Biol 27:4844-4862
    60. Reid SJ, Rees MI, van Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiology of disease 13:37-45.
    61. Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schols L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Annals of neurology 54:367-375.
    62. Roshan R, Ghosh T, Gadgil M, Pillai B (2012) Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar Ataxia 17. RNA biology 9:891-899.
    63. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proceedings of the National Academy of Sciences of the United States of America 99:16412-16418.
    64. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U (2012) Brain pathology of spinocerebellar ataxias. Acta neuropathologica 124:1-21.
    65. Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januario C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J (2002) Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Archives of neurology 59:623-629.
    66. Sun ZW, Zhang L, Zhu SJ, Chen WC, Mei B (2010) Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage. Neuroscience bulletin 26:8-16.
    67. Tan, J. W., et al. (2013). "Neuroprotective effects of biochanin A against glutamate-induced cytotoxicity in PC12 cells via apoptosis inhibition." Neurochem Res 38(3): 512-518.
    68. Uchihara T, Fujigasaki H, Koyano S, Nakamura A, Yagishita S, Iwabuchi K (2001) Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias--triple-labeling immunofluorescence study. Acta neuropathologica 102:149-152.
    69. Votyakova TV, Reynolds IJ (2005) Ca2+-induced permeabilization promotes free radical release from rat brain mitochondria with partially inhibited complex I. Journal of neurochemistry 93:526-537.
    70. Xu MF, Xiong YY, Liu JK, Qian JJ, Zhu L, Gao J (2012) Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta pharmacologica Sinica 33:578-587.
    71. Yang JL, Sykora P, Wilson DM, 3rd, Mattson MP, Bohr VA (2011) The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mechanisms of ageing and development 132:405-411.
    72. Zhang C, Du F, Shi M, Ye R, Cheng H, Han J, Ma L, Cao R, Rao Z, Zhao G (2012) Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting Ca2+ influx. Cellular and molecular neurobiology 32:121-128.
    73. Zhang C, Yuan XR, Li HY, Zhao ZJ, Liao YW, Wang XY, Su J, Sang SS, Liu Q (2014) Downregualtion of dynamin-related protein 1 attenuates glutamate-induced excitotoxicity via regulating mitochondrial function in a calcium dependent manner in HT22 cells. Biochemical and biophysical research communications 443:138-143.
    74. Zhang K, Li YJ, Yang Q, Gerile O, Yang L, Li XB, Guo YY, Zhang N, Feng B, Liu SB, Zhao MG (2013) Neuroprotective effects of oxymatrine against excitotoxicity partially through down-regulation of NR2B-containing NMDA receptors. Phytomedicine : international journal of phytotherapy and phytopharmacology 20:343-350.
    75. Zhang, Y. and B. R. Bhavnani (2006) Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci 7: 49.

    下載圖示
    QR CODE