研究生: |
簡偉銘 Chien, Wei-Ming |
---|---|
論文名稱: |
臺灣肖楠族群遺傳及表觀遺傳分岐與海拔梯度相關之適應性演化 Adaptive genetic and epigenetic Divergence along elevational gradient in populations of Calocedrus formosana |
指導教授: |
黃士穎
Hwang, Shih-Ying |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 海拔梯度 、在地適應性演化 、遺傳變異 、表觀遺傳變異 、擴增片段長度多型性 、甲基化敏感擴增多型性 |
英文關鍵詞: | elevational gradient, local adaptation, genetic variation, epigenetic variation, amplified fragment length polymorphism, methylation-sensitive amplification polymorphism |
DOI URL: | http://doi.org/10.6345/NTNU202000812 |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣島具有豐富且多變的地形景觀,在山地環境中沿海拔梯度的環境變化大。根據過去的研究顯示海拔分布範圍較廣的山地植物,在高海拔及低海拔的族群面臨的選汰壓力可能不同,而有不同的適應性演化。我們採集了臺灣肖楠12個族群共243個個體,利用擴增片段長度多型性(amplified fragment length polymorphism; AFLP)及甲基化敏感擴增多型性(methylation-sensitive amplification polymorphism; MSAP)兩種工具,量化臺灣肖楠的遺傳與表觀遺傳變異。本研究總共得到437個AFLP基因座及832個MSAP基因座。我們發現臺灣肖楠族群已有顯著的遺傳及表觀遺傳分化。將現生的臺灣肖楠族群區分為三個遺傳分群。臺灣肖楠與其他臺灣針葉樹如:香杉、臺灣油杉及臺灣杉相比有較高的遺傳及表觀遺傳分化程度以及較低的遺傳歧異度。利用DFDIST及BAYESCAN檢測臺灣肖楠族群間遺傳及表觀遺傳數據中可能偏離演化受天擇作用的AFLP及MSAP基因座;結果發現有34個AFLP及77個MSAP的基因座可能受天擇作用。我們亦發現這些偏離中性演化的基因座與環境因子有顯著的關聯性。此外,臺灣肖楠的遺傳及表觀遺傳變異與生態相關的環境因子相較於與生物氣候及地形相關的環境因子有較高的相關比例。我們的結果顯示年均溫、相對溼度、平均風速及平均日照時數(SunH)可能為驅動臺灣肖楠產生適應分歧最主要的環境因子。再者,我們在低海拔及高海拔中發現數個適應性演化基因座有相對較高的基因頻率;而這種情形在表觀遺傳變異中更為明顯。因此我們推論與生態相關的環境因子為臺灣肖楠在地適應性演化的關鍵角色。本研究對於我們在未來應用於因應全球氣候變化下臺灣肖楠的保育策略提供基礎的研究證據。
Taiwan has varied topographical landscapes with numerous climate zones. Moreover, there is a broad range of environmental gradients in a relatively short geographical range of mountain habitats. Mountainous plant species occupying wide elevational ranges are thought to experience dissimilar evolutionary trajectories depending on the selective pressures at low and high elevations. We collected 243 samples from 12 populations of the endangered species Calocedrus formosana along elevational gradients. Using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP), genetic and epigenetic variations were generated and scored a total of 437 AFLP loci and a total of 832 MSAP loci. We found relatively lower levels of genetic and epigenetic diversities and higher level of genetic and epigenetic population differentiations comparing with other Taiwan endemic conifers, such as Cunninghamia konishii, Keteleeria davidiana var. formosana, and Taiwania cryptomerioides. BAYESCAN and DFDIST identified 34 AFLP and 77 MSAP FST outlier loci. These outlier loci were found to be strongly associated with environmental variables analyzed using multiple univariate logistic regression, latent factor mixed model, and Bayesian logistic regression approaches. Further, ecological factors explained much larger proportion of outlier genetic and epigenetic variations in comparison with bioclimatic and topological factors. Our results suggest that adaptive divergence arising from environmental variation has been driven mainly by annual mean temperature, relative humidity, mean wind speed, and sunshine hours. We also found several adaptive loci with high frequencies in low- and high- elevation populations, suggesting their association with environmental variables underlying local adaptation. Therefore, ecological factors could have played critical roles in local adaptation of Ca. formosana and could be vital factors for the species conservation in the face of global change.
Angers, B., Castonguay, E., & Massicotte, R. (2010). Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19(7), 1283-1295.
Agapow, P. M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes, 1(1‐2), 101-102.
Aitken, S. N., & Whitlock, M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367-388.
Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1(1), 95-111.
Alberto, F. J., Aitken, S. N., Alía, R., González‐Martínez, S. C., Hänninen, H., Kremer, A., ... & Savolainen, O. (2013). Potential for evolutionary responses to climate change–evidence from tree populations. Glob. Chang. Biol. 19(6), 1645-1661.
Anderson, J. T., Willis, J. H., & Mitchell-Olds, T. (2011). Evolutionary genetics of plant adaptation. Trends Genet. 27(7), 258-266.
Anway, M. D., Cupp, A. S., Uzumcu, M., & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466-1469.
Arthofer, W. (2010). tinyFLP and tinyCAT: software for automatic peak selection and scoring of AFLP data tables. Mol. Ecol. Resour. 10(2), 385-388.
Barrett, R. D., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends Ecol. Evol. 23(1), 38-44.
Barton, K. (2018). MuMIn: Multi-Model Inference. R Package Version 1.40.4.Available online at: https://CRAN.R-project.org/package=MuMIn
Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48.
Beaumont, M. A., & Nichols, R. A. (1996). Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond., B, Biol. Sci. 263(1377), 1619-1626.
Beaumont, M. A., & Balding, D. J. (2004). Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 13(4), 969-980.
Bennett, S., Wernberg, T., Joy, B. A., De Bettignies, T., & Campbell, A. H. (2015). Central and rear-edge populations can be equally vulnerable to warming. Nature Commun. 6(1), 1-7.
Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R. (2008). Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216(1), 47-59.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57(1), 289-300.
Black, R., Bennett, S. R., Thomas, S. M., & Beddington, J. R. (2011). Migration as adaptation. Nature, 478(7370), 447-449.
Blanchet, F. G., Legendre, P., & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89(9), 2623-2632.
Bock, D. G., MacIsaac, H. J., & Cristescu, M. E. (2012). Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. Proc. Royal Soc. B, Bio. Sci. 279(1737), 2377-2385.
Bolnick, D. I., & Fitzpatrick, B. M. (2007). Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 38, 459-487.
Bonin, A., Taberlet, P., Miaud, C., & Pompanon, F. (2005). Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol. Bio. Evol. 23(4), 773-783.
Bonin, A., Ehrich, D., & Manel, S. (2007). Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol. Ecol. 16(18), 3737-3758.
Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73(3), 1045-1055.
Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153(1-2), 51-68.
Borcard, D., Gillet, F., & Legendre, P. (2018). Numerical ecology with R. Springer.
Bossdorf, O., Richards, C. L., & Pigliucci, M. (2008). Epigenetics for ecologists. Ecol. Lett. 11(2), 106-115.
Bothwell, H., Bisbing, S., Therkildsen, N. O., Crawford, L., Alvarez, N., Holderegger, R., & Manel, S. (2013). Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv. Genet. 14(2), 467-481.
Bourne, E. C., Bocedi, G., Travis, J. M., Pakeman, R. J., Brooker, R. W., & Schiffers, K. (2014). Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proc. Royal Soc. B, Bio. Sci. 281(1778), 20132795.
Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67(11), 3258-3273.
Brown, A. H. D., Feldman, M. W., & Nevo, E. (1980). Multilocus structure of natural populations of Hordeum spontaneum. Genet. 96(2), 523-536.
Brousseau, L., Foll, M., Scotti-Saintagne, C., & Scotti, I. (2015). Neutral and adaptive drivers of microgeographic genetic divergence within continuous populations: the case of the neotropical tree Eperua falcata (Aubl.). PLoS One, 10(3).
Buschiazzo, E., Ritland, C., Bohlmann, J., & Ritland, K. (2012). Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol. Bio. 12(1), 8.
Butlin, R. K. (2010). Population genomics and speciation. Genetica, 138(4), 409-418.
Campbell, D., Duchesne, P., & Bernatchez, L. (2003). AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol. Ecol. 12(7), 1979-1991.
Chang, C. T., Wang, S. F., Vadeboncoeur, M. A., & Lin, T. C. (2014). Relating vegetation dynamics to temperature and precipitation at monthly and annual timescales in Taiwan using MODIS vegetation indices. Int. J. Remote Sens. 35(2), 598-620.
Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024-1026.
Christmas, M. J., Breed, M. F., & Lowe, A. J. (2016). Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17(2), 305-320.
Cole, C. T. (2003). Genetic variation in rare and common plants. Annu. Rev. Ecol. Evol. Syst. 34(1), 213-237.
Crawford, K. C., & Hudson, H. R. (1973). The diurnal wind variation in the lowest 1500 ft in central Oklahoma. June 1966–May 1967. J. Appl. Meteor. 12(1), 127-132.
Crispo, E., Bentzen, P., Reznick, D. N., Kinnison, M. T., & Hendry, A. P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Mol. Ecol. 15(1), 49-62.
Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292(5517), 673-679.
Doyle, J. (1991). DNA protocols for plants. In Molecular techniques in taxonomy (pp. 283-293). Springer, Berlin, Heidelberg.
Dray, S., & Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. J. Stat. Soft. 22(4), 1-20.
Dray, S., Blanchet, G., Borcard, D., Guenard, G., Jombart, T., Larocque, G., et al. (2019). adespatial: Multivariate multiscale spatial analysis. R package version 0.3-7.
Eckert, C. G., Samis, K. E., & Lougheed, S. C. (2008). Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17(5), 1170-1188.
Ehrich, D. (2006). AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol. Ecol. Notes, 6(3), 603-604.
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564-567.
Fang, J. Y., Chung, J. D., Chiang, Y. C., Chang, C. T., Chen, C. Y., & Hwang, S. Y. (2013). Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var. formosana (Pinaceae). PLoS One, 8(7), e70162.
Farjon, A. (2010). A Handbook of the World's Conifers (2 vols.) (Vol. 1). Brill.
Flatscher, R., Frajman, B., Schönswetter, P., & Paun, O. (2012). Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation?. Genet. Res. Int. 2012.
Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics, 180(2), 977-993.
Fox, J., & Weisberg, S. (2011). Multivariate linear models in R. An R Companion to Applied Regression. Los Angeles: Thousand Oaks.
Frei, E. R., Ghazoul, J., & Pluess, A. R. (2014). Plastic responses to elevated temperature in low and high elevation populations of three grassland species. PLoS One, 9(6).
Frichot, E., Schoville, S. D., Bouchard, G., & François, O. (2013). Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687-1699.
Frichot, E., & François, O. (2015). LEA: an R package for landscape and ecological association studies. Methods Ecol. Evol. 6(8), 925-929.
González‐Martínez, S. C., Krutovsky, K. V., & Neale, D. B. (2006). Forest‐tree population genomics and adaptive evolution. New Phytol. 170(2), 227-238.
Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2018). rstanarm: Bayesian applied regression modeling via Stan. R package version 2.17. 4. Online< http://mc-stan. org.
Hahn, T., Kettle, C. J., Ghazoul, J., Frei, E. R., Matter, P., & Pluess, A. R. (2012). Patterns of genetic variation across altitude in three plant species of semi-dry grasslands. PLoS One, 7(8).
Hamilton, M. (2011). Population genetics. John Wiley & Sons.
Hampe, A., & Petit, R. J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8(5), 461-467.
Hamrick, J. L., & Godt, M. W. (1996). Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 351(1345), 1291-1298.
Hamrick, J. L., Godt, M. J. W., & Sherman-Broyles, S. L. (1992). Factors influencing levels of genetic diversity in woody plant species. In Population genetics of forest trees (pp. 95-124). Springer, Dordrecht.
Hedrick, P. W. (2006). Genetic polymorphism in heterogeneous environments: the age of genomics. Annu. Rev. Ecol. Evol. Syst. 37, 67-93.
Hervé, M. (2018). RVAideMemoire: Testing and Plotting Procedures for Biostatistics. R Package Version 0.9-69. https://CRAN.R-project.org/package=RVAideMemoire
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965-1978.
Hoffmann, A. A., & Sgro, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 479-485.
Holderegger, R., Kamm, U., & Gugerli, F. (2006). Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc. Ecol. 21(6), 797-807.
Holsinger, K. E. (2003). Hickory: a package for analysis of population genetic data v1. 1. http://darwin. eeb. uconn. edu/hickory/documentation. html.
Holsinger, K. E., & Wallace, L. E. (2004). Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Mol. Ecol. 13(4), 887-894.
Holton, J. R. (1967). The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19(2), 200-205.
Hsieh, Y. C., Chung, J. D., Wang, C. N., Chang, C. T., Chen, C. Y., & Hwang, S. Y. (2013). Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity, 111(2), 147-156.
Huang, C. L., Chang, C. T., Huang, B. H., Chung, J. D., Chen, J. H., Chiang, Y. C., & Hwang, S. Y. (2015a). Genetic relationships and ecological divergence in Salix species and populations in Taiwan. Tree Genet. Genom. 11(3), 39.
Huang, C. L., Chen, J. H., Tsang, M. H., Chung, J. D., Chang, C. T., & Hwang, S. Y. (2015b). Influences of environmental and spatial factors on genetic and epigenetic variations in Rhododendron oldhamii (Ericaceae). Tree Genet. Genom. 11(1), 823.
Huang, C. L., Chen, J. H., Chang, C. T., Chung, J. D., Liao, P. C., Wang, J. C., & Hwang, S. Y. (2016). Disentangling the effects of isolation-by-distance and isolation-by-environment on genetic differentiation among Rhododendron lineages in the subgenus Tsutsusi. Tree Genet. Genom. 12(3), 53.
Jeffreys, H. (1961). Theory of Probability. Oxford: Oxford University Press.
Jiménez, P., Gómez, J. P. M., Bustamante, E. G., Hevia, J. N., Gutiérrez, J. M., Eceiza, E. E. L., & González-Rouco, J. F. (2009). Diurnal surface wind variations over complex terrain. Física de la Tierra, (21), 79-91.
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94.
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071.
Jump, A. S., & Penuelas, J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8(9), 1010-1020.
Jump, A. S., Mátyás, C., & Peñuelas, J. (2009). The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24(12), 694-701.
Jump, A. S., Huang, T. J., & Chou, C. H. (2012). Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography, 35(3), 204-210.
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecol. Lett. 7(12), 1225-1241.
Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49(4), 725.
Kirkpatrick, M., & Barton, N. H. (1997). Evolution of a species' range. Am. Nat., 150(1), 1-23.
Körner, C. (2007). The use of ‘altitude’in ecological research. Trends Ecol. Evol. 22(11), 569-574.
Körner, C. (2012). Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media.
Kremer, A., Ronce, O., Robledo‐Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., ... & Kuparinen, A. (2012). Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15(4), 378-392.
Kvaček, Z. (1999). An ancient Calocedrus (Cupressaceae) from the European Teriary. Flora, 194(2), 237-248.
Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768-1771.
Lenoir, J., & Svenning, J. C. (2013). Latitudinal and elevational range shifts under contemporary climate change. Encyclopedia of Biodiversity (ed. By S. A. Levin) (pp. 599–611). Cambridge, MA: Academic Press.
Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends Ecol. Evol. 17(4), 183-189.
Lenth, R. (2018). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.1. Available online at: https://CRAN.R-project.org/package=emmeans
Lesica, P., & Allendorf, F. W. (1995). When are peripheral populations valuable for conservation?. Conserv. Biol. 9(4), 753-760.
Liu, T. (1966). Study on the phytogeography of the conifers and taxad of Taiwan. Bull. taiwan For. Res. Inst., 122, 1-33.
Li, C. F., Chytrý, M., Zelený, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., ... & Wang, J. C. (2013). Classification of Taiwan forest vegetation. Appl. Veg. Sci. 16(4), 698-719.
Li, H. L., & Hsuan, K. (1994). Pinaceae. Flora of Taiwan, 1, 568-569.
Li, Y. S., Chang, C. T., Wang, C. N., Thomas, P., Chung, J. D., & Hwang, S. Y. (2018). The contribution of neutral and environmentally dependent processes in driving population and lineage divergence in Taiwania (Taiwania cryptomerioides). Front. Plant Sci. 9.
Li, Y. S., Shih, K. M., Chang, C. T., Chung, J. D., & Hwang, S. Y. (2019). Testing the Effect of Mountain Ranges as A Physical Barrier to Current Gene Flow and Environmentally Dependent Adaptive Divergence in Cunninghamia konishii (Cupressaceae). Front. Genet. 10, 742.
Manel, S., Gugerli, F., Thuiller, W., Alvarez, N., Legendre, P., Holderegger, R., ... & IntraBioDiv Consortium. (2012). Broad‐scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol. 21(15), 3729-3738.
Martin, P. R., & McKay, J. K. (2004). Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution, 58(5), 938-945.
Matuszko, D., & Węglarczyk, S. (2015). Relationship between sunshine duration and air temperature and contemporary global warming. Int. J. Climatol. 35(12), 3640-3653.
Méndez-González, I. D., Jardón-Barbolla, L., & Jaramillo-Correa, J. P. (2017). Differential landscape effects on the fine-scale genetic structure of populations of a montane conifer from central Mexico. Tree Genet. Genom. 13(1), 30.
Meudt, H. M., & Clarke, A. C. (2007). Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 12(3), 106-117.
Monahan, W. B., Pereira, R. J., & Wake, D. B. (2012). Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species. BMC Bio. 10(1), 20.
Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling?. Ecography, 37(2), 191-203.
Nei, M. (1972). Genetic distance between populations. Am. Nat. 106(949), 283-292.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70(12), 3321-3323.
O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41(5), 673-690.
Ohsawa, T., & Ide, Y. (2008). Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob. Ecol. Biogeogr. 17(2), 152-163.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., ... & Wagner, H. (2017). vegan: community ecology package. R package.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst., 37, 637-669.
Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87(10), 2614-2625.
Petit, R. J., Duminil, J., Fineschi, S., Hampe, A., Salvini, D., & Vendramin, G. G. (2005). Invited review: comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 14(3), 689-701.
Poncet, B. N., Herrmann, D., Gugerli, F., Taberlet, P., Holderegger, R., Gielly, L., ... & Manel, S. (2010). Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol. Ecol. 19(14), 2896-2907.
Probst, A. V., Dunleavy, E., & Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 10(3), 192.
Prunier, J., Gerardi, S., Laroche, J., Beaulieu, J., & Bousquet, J. (2012). Parallel and lineage‐specific molecular adaptation to climate in boreal black spruce. Mol. Ecol. 21(17), 4270-4286.
Räsänen, K., & Hendry, A. P. (2008). Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol. Lett. 11(6), 624-636.
Raeymaekers, J. A., Chaturvedi, A., Hablützel, P. I., Verdonck, I., Hellemans, B., Maes, G. E., ... & Volckaert, F. A. (2017). Adaptive and non-adaptive divergence in a common landscape. Nat. Commun. 8(1), 267.
Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conserv. Biol. 17(1), 230-237.
Richards, E. J. (2006). Inherited epigenetic variation—revisiting soft inheritance. Nat. Rev. Genet. 7(5), 395-401.
Richards, E. J. (2008). Population epigenetics. Curr. Opin. Genet. Dev. 18(2), 221-226.
Richards, C. L., Alonso, C., Becker, C., Bossdorf, O., Bucher, E., Colomé‐Tatché, M., ... & Grosse, I. (2017). Ecological plant epigenetics: Evidence from model and non‐model species, and the way forward. Ecol. Lett. 20(12), 1576-1590.
Robledo‐Arnuncio, J. J., Collada, C., Alia, R., & Gil, L. (2005). Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J. Biogeogr. 32(4), 595-605.
Rumpf, S. B., Hülber, K., Zimmermann, N. E., & Dullinger, S. (2019). Elevational rear edges shifted at least as much as leading edges over the last century. Global. Ecol. Biogeor. 28(4), 533-543.
Rundell, R. J., & Price, T. D. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24(7), 394-399.
Sagarin, R. D., & Gaines, S. D. (2002). The ‘abundant centre’distribution: to what extent is it a biogeographical rule?. Ecol. Lett. 5(1), 137-147.
Sahu, P. P., Pandey, G., Sharma, N., Puranik, S., Muthamilarasan, M., & Prasad, M. (2013). Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. 32(8), 1151-1159.
Savolainen, O., Pyhäjärvi, T., & Knürr, T. (2007). Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38, 595-619.
Saze, H., Scheid, O. M., & Paszkowski, J. (2003). Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat. Genet. 34(1), 65.
Schmitz, R. J., Schultz, M. D., Urich, M. A., Nery, J. R., Pelizzola, M., Libiger, O., ... & Ecker, J. R. (2013). Patterns of population epigenomic diversity. Nature, 495(7440), 193-198.
Schlötterer, C. (2003). Hitchhiking mapping–functional genomics from the population genetics perspective. Trends Genet. 19(1), 32-38.
Schoville, S. D., Bonin, A., François, O., Lobreaux, S., Melodelima, C., & Manel, S. (2012). Adaptive genetic variation on the landscape: methods and cases. Annu. Rev. Ecol. Evol. Syst. 43, 23-43.
Schulz, B., Eckstein, R. L., & Durka, W. (2013). Scoring and analysis of methylation‐sensitive amplification polymorphisms for epigenetic population studies. Mol. Ecol. Resour. 13(4), 642-653.
Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution, 68(1), 1-15.
Shih, K. M., Chang, C. T., Chung, J. D., Chiang, Y. C., & Hwang, S. Y. (2018). Adaptive genetic divergence despite significant isolation-by-distance in populations of Taiwan Cow-tail fir (Keteleeria davidiana var. formosana). Front. Plant Sci. 9, 92.
Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236(4803), 787-792.
Slatkin, M. (2008). Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9(6), 477-485.
Solomon, S., Qin, D., Manning, M., Averyt, K., & Marquis, M. (Eds.). (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Series B Stat. Methodol. 64(4), 583-639.
Stearns, S. C. (1989). The evolutionary significance of phenotypic plasticity. Bioscience, 39(7), 436-445.
Storey, J. D., Bass, A. J., Dabney, A., and Robinson, D. (2019). qvalue: Q-value estimation for false discovery rate control. R package version, 2.18.0. Available online at: http://github.com/StoreyLab/qvalue
Storz, J. F. (2010). Genes for high altitudes. Science, 329(5987), 40-41.
Stucki, S., Orozco‐terWengel, P., Forester, B. R., Duruz, S., Colli, L., Masembe, C., ... & Bruford, M. W. (2017). High performance computation of landscape genomic models including local indicators of spatial association. Mol. Ecol. Resour. 17(5), 1072-1089.
Su, H. J. (1985). Studies on the climate and vegetation types of the natural forests in Taiwan (III): a scheme of geographic regions. Quar. J. Chin. For. 18, 33-44.
Thiel‐Egenter, C., Gugerli, F., Alvarez, N., Brodbeck, S., Cieślak, E., Colli, L., ... & Negrini, R. (2009). Effects of species traits on the genetic diversity of high‐mountain plants: a multi‐species study across the Alps and the Carpathians. Glob. Ecol. Biogeogr. 18(1), 78-87.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geogr. Rev. 38(1), 55-94.
Thorpe, R. S., Surget-Groba, Y., & Johansson, H. (2008). The relative importance of ecology and geographic isolation for speciation in anoles. Trans. R. Soc. Lond., B, Biol. Sci. 363(1506), 3071-3081.
Thuiller, W. (2007). Climate change and the ecologist. Nature, 448(7153), 550-552.
Vekemans, X., Beauwens, T., Lemaire, M., & Roldán‐Ruiz, I. (2002). Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol. Ecol. 11(1), 139-151.
Visser, M. E. (2008). Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. Lond., B, Biol. Sci. 275(1635), 649-659.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T. V. D., Hornes, M., ... & Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23(21), 4407-4414.
Vuylsteke, M., Peleman, J. D., & Van Eijk, M. J. (2007). AFLP technology for DNA fingerprinting. Nat. Protoc. 2(6), 1387.
Wagner, D. B. (1992). Nuclear, chloroplast, and mitochondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. New For. 6(1-4), 373-390.
Wall, J. D., Andolfatto, P., & Przeworski, M. (2002). Testing models of selection and demography in Drosophila simulans. Genetics, 162(1), 203-216.
Walter, H. (1979). Vegetation of the earth and ecological systems of the geo-biosphere. Springer Science & Business Media.
Wang, I. J., Glor, R. E., & Losos, J. B. (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16(2), 175-182.
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Mol. Ecol. 23(23), 5649-5662.
Weir, B. S., & Cockerham, C. C. (1984). Estimating F‐statistics for the analysis of population structure. evolution, 38(6), 1358-1370.
Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114.
Xiong, L. Z., Xu, C. G., Maroof, M. S., & Zhang, Q. (1999). Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol. Gen. Genet. MGG, 261(3), 439-446.
Zhang, M., Suren, H., & Holliday, J. A. (2019). Phenotypic and genomic local adaptation across latitude and altitude in Populus trichocarpa. Genome. Biol. Evol. 11(8), 2256-2272.
Zhivotovsky, L. A. (1999). Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 8(6), 907-913.