研究生: |
許又仁 You-Ren Hsu |
---|---|
論文名稱: |
應用單分子技術於SARS冠狀病毒核殼鞘蛋白-DNA交互作用之研究 SARS Coronavirus Nucleocapsid Protein - DNA Interaction Investigated by Single Molecule Technique |
指導教授: |
阮文滔
Juan, Wen-Tau 黃太煌 Huang, Tai-Huang |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 單分子技術 、蛋白質 、核酸 、交互作用 |
英文關鍵詞: | Single Molecule Technique, SARS, Nucleocapsid, Protein, DNA, Interaction |
論文種類: | 學術論文 |
相關次數: | 點閱:232 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
SARS-CoV核殼鞘蛋白(nucleocapsid protein)與其病毒RNA結合形成核殼體(ribonucleocapsid)是包裹形成病毒顆粒必要的過程。近來SARS-CoV核殼鞘蛋白的研究顯示其蛋白質的結構靠近N端與C端個別有一個具有結構的區塊(NTD與CTD),且兩者皆能與RNA與DNA結合。在這個過程涵蓋了複雜的蛋白質-核酸交互作用,以及蛋白質之間彼此的交互作用。在傳統的生物化學技術如Electrophoretic Mobility Shift Assay (EMSA)應用於研究蛋白質-核酸交互作用有其技術性的限制,難以直接性的區別CTD與NTD與核酸結合過程中所扮演的腳色的差異。
這篇論文的目標是應用單分子技術構建一個可直接觀察SARS-CoV CTD與NTD個別與單一核酸分子產生交互作用過程的實驗系統。我們透過螢光染劑YOYO-1和DNA結合並接著在經聚乙二醇(PEG)改質的玻璃上,並透過Alexa594和蛋白質結合,構築螢光影像。使得實驗過程可透過兩種螢光的受激發後放光的波長不同,在不同的濾鏡頻道下分別觀察DNA與蛋白質產生交互作用時的影像。
實驗的結果意外的發現SARS-CoV CTD在低濃度的環境下,SARS-CoV CTD會產生聚合(Aggregation)的現象,使得少量SARS-CoV CTD以Oligomer形式存在;而SARS-CoV NTD在相同的濃度條件卻並不產生聚合的現象。而在蛋白質與核酸交互作用的實驗當中,我們觀測到SARS-CoV CTD與DNA之間的親和力(affinity)大於SARS-CoV NTD與DNA之間的親和力與相關文獻的EMSA結果一致。透過此實驗系統的建構,可進一步應用於了解核殼鞘蛋白(NP)-RNA交互作用與SARS-CoV RNA的包裹機制。
SARS-CoV nucleocapsid protein (N protein) binds to SARS-CoV RNA to form the viral ribonucleocapsid which is essential for packaging of the virus particle. Recently, SARS-CoV N protein has been shown to compose of two structured domains, the N-terminal domain (NTD) and the C-terminal domain (CTD). Both domains have been shown to be able to bind RNA and DNA. Formation of the nucleocapsid involves complex protein-nucleic acid and protein-protein interactions. The traditional biochemical technique used to study protein-nucleic acid interaction such as Electrophoretic Mobility Shift Assay (EMSA) has its limitation and is hard to differentiate the roles of the two domains of SARS-CoV N protein in the N protein-nucleic acids binding process.
The goal of this thesis is to develop a single molecule technique to directly observe the interaction between individual nucleic acid and SARS-CoV CTD and NTD of N proteins. We have prepared Alexa 594-labeled NTD and CTD, as well as YOYO-labeled DNA. The DNA is immobilized on a chip coated with polyethylene glycol (PEG). Protein and DNA signals can be observed in different channels of a fluorescent microscope. Protocols for observing and analyzing the interaction of the labeled protein with labeled DNA have been developed. Surprisingly, we observed protein aggregates in low concentration of CTD, but not NTD. Thus, we concluded that a small fraction of the CTD exists in oligomer state. We can also observe the binding of CTD and NTD to DNA and found, in consistent with other biochemical and molecular biology studies, that CTD binds to DNA with higher affinity. Further investigation should leads to better understanding of the NP-RNA interaction and SARS-CoV RNA packaging.
1. Stadler, K., et al., SARS [mdash] beginning to understand a new virus. Nat Rev Micro, 2003. 1(3): p. 209-218.
2. Marra, M.A., et al., The Genome Sequence of the SARS-Associated Coronavirus. Science, 2003. 300(5624): p. 1399-1404.
3. Yeh, S.-H., et al., Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: Molecular epidemiology and genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(8): p. 2542-2547.
4. Ng, M.L., et al., Early events of SARS coronavirus infection in vero cells. Journal of Medical Virology, 2003. 71(3): p. 323-331.
5. He, R., et al., Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, 2003. 311(4): p. 870-876.
6. Takeda, M., et al., Solution Structure of the C-terminal Dimerization Domain of SARS Coronavirus Nucleocapsid Protein Solved by the SAIL-NMR Method. Journal of Molecular Biology, 2008. 380(4): p. 608-622.
7. Chen, C.-Y., et al., Structure of the SARS Coronavirus Nucleocapsid Protein RNA-binding Dimerization Domain Suggests a Mechanism for Helical Packaging of Viral RNA. Journal of Molecular Biology, 2007. 368(4): p. 1075-1086.
8. Huang, Q., et al., Structure of the N-Terminal RNA-Binding Domain of the SARS CoV Nucleocapsid Protein. Biochemistry, 2004. 43(20): p. 6059-6063.
9. Hsieh, P.-K., et al., Assembly of Severe Acute Respiratory Syndrome Coronavirus RNA Packaging Signal into Virus-Like Particles Is Nucleocapsid Dependent. Journal of Virology, 2005. 79(22): p. 13848-13855.
10. Chang, C.-k., et al., Multiple Nucleic Acid Binding Sites and Intrinsic Disorder of SARS Coronavirus Nucleocapsid Protein - Implication for Ribonucleocapsid Protein Packaging. Journal of Virology, 2008: p. JVI.02001-08.
11. de Gennes, P.G., Reptation of a Polymer Chain in the Presence of Fixed Obstacles. The Journal of Chemical Physics, 1971. 55(2): p. 572-579.
12. Levene, S. and B. Zimm, Understanding the anomalous electrophoresis of bent DNA molecules: a reptation model. Science, 1989. 245(4916): p. 396-399.
13. Hellman, L.M. and M.G. Fried, Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protocols, 2007. 2(8): p. 1849-1861.
14. Electrophoretic mobility shift assays. Nat Meth, 2005. 2(7): p. 557-558.
15. Crothers, D.M., et al., [9] DNA bending in protein-DNA complexes, in Methods in Enzymology. 1991, Academic Press. p. 118-146.
16. Fried, M.G. and M.A. Daugherty, Electrophoretic analysis of multiple protein-DNA interactions. ELECTROPHORESIS, 1998. 19(8-9): p. 1247-1253.
17. Chang, C.-k., et al., The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure. FEBS Letters, 2005. 579(25): p. 5663-5668.
18. Saikatendu, K.S., et al., Ribonucleocapsid Formation of Severe Acute Respiratory Syndrome Coronavirus through Molecular Action of the N-Terminal Domain of N Protein. Journal of Virology, 2007. 81(8): p. 3913-3921.
19. Moerner, W.E. and L. Kador, Optical detection and spectroscopy of single molecules in a solid. Physical Review Letters, 1989. 62(21): p. 2535.
20. Joo, C., et al., Advances in Single-Molecule Fluorescence Methods for Molecular Biology. Annual Review of Biochemistry, 2008. 77(1): p. 51-76.
21. Cornish, P.V. and T. Ha, A Survey of Single-Molecule Techniques in Chemical Biology. ACS Chemical Biology, 2007. 2(1): p. 53-61.
22. Gell, C., D. Brockwell, and A. Smith, Handbook of single molecule fluorescence spectroscopy. 2006, Oxford ; New York: Oxford University Press. xvi, 262 p.
23. Lamichhane, R., et al., Single-molecule FRET of protein-nucleic acid and protein-protein complexes: Surface passivation and immobilization. Methods, 2010. 52(2): p. 192-200.
24. Yokota, H., et al., Single-molecule Visualization of Binding Modes of Helicase to DNA on PEGylated Surfaces. Chemistry Letters, 2009. 38(4): p. 308-309.
25. Chang, C.-K., et al., Multiple Nucleic Acid Binding Sites and Intrinsic Disorder of Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Implications for Ribonucleocapsid Protein Packaging. Journal of Virology, 2009. 83(5): p. 2255-2264.