研究生: |
陳正昌 Cheng-Chang CHEN |
---|---|
論文名稱: |
氣候模式極端降雨指標的統計降尺度研究 Statistics downscaling of extreme indices in IPCC AR4 climate models |
指導教授: |
陳正達
Chen, Cheng-Ta |
學位類別: |
碩士 Master |
系所名稱: |
海洋環境科技研究所 Graduate Institute of Marine Environmental Science and Technology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 氣候模式 、極端降雨 、統計降尺度 |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用長期高解析度逐日觀測資料,嘗試建立極端降雨指標的空間差異變量,並用此變量對IPCC AR4(2007)的氣候模式資料進行降尺度,以提升GCMs針對區域極端降雨的強度及空間分布描述。為了降低氣候模式本身因物理方法及參數設定對於極端降雨模擬的誤差,本文應用Wood(2004)發展的誤差修正方法,將觀測資料排序成累積機率分布(CDF)曲線,利用此曲線為基準,對模式歷史模擬及未來模擬作整體強度範圍的校正,以消除模式本身的誤差。
透過統計降尺度及誤差修正方法,本文探討了下列四種極端降雨指標: 1.年最大單日累積降雨量(RX1DAY);2.年最大五日累積降雨量(RX5DAY);3.年期間雨日日數(RR1),以及4.年平均雨日降雨強度(SDII)。
研究結果顯示,此方法對極端降雨在氣候變遷的區域特徵及強度推估上均有顯著描述。(1)季風亞洲地區:可將氣候模式解析度提升至0.25度X0.25度,在原始解析度下強度不足的大陸東南沿海區域及孟加拉灣北部極端降雨特徵都有明顯的改善。(2)台灣地區:透過本研究方法提升解析度和強度特徵後,可顯示出北部、中部,及南部之極端降雨特徵。另外利用此方法將目前推估未來氣候變遷的低解析度氣候模式,可得到高解析度極端氣候事件長期變遷的推估,而且可以保留多個氣候模式推估結果,以呈現多個氣候模式的不確定性範圍。
Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109.
Bell, Jason L., Lisa C. Sloan, Mark A. Snyder, 2004: Regional Changes in Extreme Climatic Events: A Future Climate Scenario. J. Climate, 17, 81–87.
C. Covey, M. Latif, B. McAvaney, J. F. B. Mitchell, and R. Stouffer, 2004: Soliciting participation in climate model analyses leading to IPCC Fourth Assessment Report. Eos, Trans. Amer. Geophys. Union, 85, 274.
Chen, C.-T.and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 1605-1621.
Dessai, S., X. Lu, and M. Hulme, 2005: Limited sensitivity analysis of regional climate change probabilities for the 21st century. J. Geophys. Res., 110, D19108.
Easterling, D. R., J. L. Evans, P. Ya.Groisman, T. R. Karl, K. E.Kunkel, and P. Ambenje, 2000a: Observed variability and trends in extreme climate events: A brief review. Bull. Amer. Meteor. Soc., 81, 417–425.
Folland, C. K., and Coauthors, 2001: Observed climate variability and change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 99–181.
Fisher R. A., and L.H.C.Tippett, 1928:Limiting forms of the frequency distribution of the largest and smallest member of a sample. Proc. Cambridge Phil.Soc., 24, 180-190.
G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000b: Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.
Giorgi, F, Whetton, PW, Jones, RG, Christensen, JH, Mearns, LO, Hewitson, B, von Storch, H, Francisco, R, Jack, C (2001) "Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings" Geophys Res Lett 28: 3317-3320.
Groisman, P. Ya., R. W. Knight, D. R. Easterling, T. R. Karl, G. C. Hegerl, and V. N. Razuvaev, 2005: Trends in intense precipitation in the climate record. J. Climate, 18, 1326–1350.
Huth, R., 2002: Statistical downscaling of daily temperature in central Europe. J. Climate,15,1731-1742.
IPCC Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press,Cambridge, United Kingdom and New York, NY, USA, 996 pp.
Kunkel, K. E., D. R. Easterling, K. Redmond, and K. Hubbard, 2003: Temporal variations of extreme precipitation events in the United States: 1895–2000.Geophys. Res. Lett., 30, 1900.
Katz, R., and B. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289–302.
Lo,2009: Projecting high-resolution extreme climate indices with observational constrain
Lorenz, E.N. , 1963 : Deterministic non-periodic flow, J. Atmos. Sci. , 20,130-141.
Richard W. Katz,2010: Statistics of extremes in climate change: Climatic Change,Volume 100, Number 1, 71-76.
Roeckner E., et al., The atmospheric general circulation model ECHAM 5. PART II: Sensitivity of Simulated Climate to Horizontal and Vertical Resolution, MPI-Report 354, 56 pp, 2004.
Themeβl, M.-J., A. Gobiet, and A. Leuprecht, 2010 : Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. International Journal of Climatology,10.1002/joc.2168.
McAvaney, B. J., and Coauthors, 2001: Model evaluation. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds.,Cambridge University Press, 471–523.
Meehl, G. A., 1995: Global coupled general circulation models. Bull. Amer. Meteor. Soc., 76, 951–957.
J. M. Arblaster, and C. Tebaldi, 2005a: Understanding future patterns of precipitation extremes in climate model simulations. Geophys. Res. Lett., 32, L18719.
Omolayo, A.S., 1993. On the transposition of areal reduction factors for rainfall frequency estimation, J. Hydrol., 145, 191-205.
Tustison, B., D. Harris, and E. Foufoula-Georgiou (2001), Scale issues in verification of precipitation forecasts, J. Geophys. Res., 106, 11,775–11,784.
Washington W.-M., J.-W.Weatherly, G.-A.Meehl, A.-J.Semtner Jr., T.-W.Bettge, A.-P.Craig, W.-G. Strand Jr., J. Arblaster, V.-B. Wayland, R. James, and Y. Zhang, 2000: Parallel climate model (PCM) contral and transient simulations. Climate Dynamics,16,755-774.
Wang, J., and X. Zhang, 2008: Downscaling and projection of winter extreme daily precipitation over North America. J. Climate,21,923-937.
Wilby, R.L.and Harris, I. 2006. A framework for assessing uncertainties in climatechange impacts: low flow scenarios for the River Thames, UK. Water ResourcesResearch, 42, W02419.
Wood,A.-W.,L.-R.,Leung, V.Sridhar, and D.-P. Lettenmaier,2004:Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change,62,189-216.
Xie, P., A. Yatagai, M. Chen, T. Hayasaka, Y. Fukushima, C. Liu, and S. Yang (2007): A gauge-based analysis of daily precipitation over East Asia, Journal of Hydrometeorology, 8, 607-627.