簡易檢索 / 詳目顯示

研究生: 王政光
Cheng-Kuang Wang
論文名稱: 人類遺傳疾病:第一部份:台灣帕金森氏症的分子遺傳研究; 第二部份:台灣杭丁頓氏症患者IT15基因CAG重複序列的單套型分析
Human Genetic Diseases:Part I: Molecular genetic studies of Parkinson's disease in Taiwan; Part II: DNA haplotype analysis of CAG repeat of the IT15 gene in Taiwanese Huntington's disease patients
指導教授: 李桂楨
Lee, Guey-Jen
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 104
中文關鍵詞: 帕金森氏症基因多型性熱休克蛋白單套型杭丁頓氏症CAG三核苷重複序列
英文關鍵詞: Parkinson's disease, polymorphism, alpha-synuclein, parkin, heat-shock protein 70, NACP-Rep1, haplotype analysis, polyglutamine disease, Huntington's disease, CAG trinucleotide repeat
論文種類: 學術論文
相關次數: 點閱:314下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部份:摘要
    帕金森氏症(Parkinson's disease;以下簡稱為PD)為一種好發於老年的神經退化性疾病,臨床上病人會出現休息性的震顫、僵直、緩動症和步伐不穩等運動功能失常症狀。病理學上PD病患的中腦黑質緻密區多巴胺神經元細胞本體及突起處出現嗜伊紅性的蛋白質包涵體稱為Lewy body,造成多巴胺神經元大量的死亡。包涵體內蛋白組成以-synuclein為主。-synuclein為一突觸前蛋白(presynaptic protein)由染色體4q21-23的SNCA基因所編碼(enode)。先前細胞及動物模式研究顯示,A53T及A30P突變的-synuclein蛋白容易堆積在包涵體內,顯示-synuclein蛋白質的變異可能參與PD的分子機制。近來亦有報導顯示SNCA基因的triplication及duplication與家族性PD相關,顯示野生型-synuclein的過度表現亦可能引發PD。除SNCA基因的突變外,parkin、DJ-1、UCHL1、PINK1、LRRK2等基因的突變亦被報導可能參與的PD致病機轉。但上述基因突變僅見於少數家族性PD患者,大部分偶發性PD的發生,可能和多種候選基因的多型性變異相關。本研究即針對SNCA、parkin、HSP70等候選基因的多型性變異,進行病例-對照組(case-control)的研究,而統計後具有顯著差異的基因變異,再配合功能性的檢測,以確認這些基因變異參與PD的致病分子機制。在SNCA基因之NACP-Rep1微衛星序列,NACP-Rep1微衛星基因型或對偶基因頻率,在患者與正常人族群間沒有統計上的顯著差異,但RsaI T>C多型性的分析中,PD病患族群中C/C基因型和C對偶基因的頻率明顯要少於控制組(P值分別為0.0153、0.0135)。若以NACP-Rep1和RsaI T>C進行單套型分析,發現0-T及0-C單套型在PD和控制者族群間的分佈存在顯著差異性(0-T:29.6% v.s. 22.6%,P=0.0287;0-C:6.9% v.s. 12.1%,P=0.0082)。另外,0-T單套型明顯地增加罹患PD的危險(odds ratio為1.54;95% CI 1.11-2.15,P = 0.0103);相反地,0-C單套型卻降低此種風險(odds ratio為0.57;95% CI 0.36-0.90,P = 0.0177)。利用同步定量PCR檢測在PD患者血液中白血球SNCA mRNA的表現量,發現RsaI T/T和RsaI T/C基因型者確實有差異(但不顯著),進一步構築報導質體分析此多型性對轉錄活性的影響,結果無論是IMR32細胞或293細胞,RsaI-C對偶基因明顯驅動較低的報導基因轉錄活性。在HSP70基因家族的多型性分析顯示,HSP70-2和HSP70-hom的多型性的基因型分佈在PD患者和正常人之間並無顯著差異。然而,HSP70-1 -110 A>C、+190 G>C兩多型性的基因型分佈在PD患者和正常人之間有顯著的差異(P = 0.0004、0.012),其中-110 C/C和+190 C/C基因型在PD患者族群的比率明顯高於正常族群(P = 0.001、0.006),而無論是-110 C/C或+190 C/C基因型其罹患PD的相對風險明顯增高(-110 C/C者odds ratio為2.91,95% CI 1.51-5.96,P = 0.0002;+190 C/C者odds ratio為3.59,95% CI=1.53-9.88,P = 0.006)。利用報導基因分析啟動子的多型性,發現-110 A對偶基因無論在IMR32細胞或是293細胞中均能驅動較高報導基因的轉錄能力,而且在細胞經熱休克處理後也呈現相似的趨勢。在parkin基因的分析上,利用SSCP和定序篩檢126個PD患者的parkin基因的所有表現子,結果僅一個位於表現子中的異型合子的突變被發現(P437A)。而分析三個位於表現子的多型性S167N、R366W、Vl380L後,發現這三個多型性無論是在基因型的分佈或對偶基因的頻率均無顯著的差異,因而推測這三個基因多型性並不影響對台灣地區個體對PD的感受性。綜言之,本研究結果顯示SNCA基因RsaI T>C取代和HSP70-1的-110 A>C可能影響台灣地區個體對偶發性PD的感受性,而parkin基因的變異則較不相關。

    第二部分:摘要
    杭丁頓氏症(Huntington's disease;簡稱HD)是一種體染色體顯性的神經退化性疾病,肇因於染色體4p16.3位置的IT15基因中,CAG三核苷重複序列擴增。其臨床症狀包括中年發病、運動、認知及精神性的失調。IT15基因轉錄出huntingtin蛋白,CAG擴增會導致此蛋白的多麩醯胺片段(polyglutamine tract)增長而致病。正常人CAG的重複序列範圍在10 ~ 34個,而病患的CAG重複序列則會擴增到35個以上;範圍在36 ~ 39者則有不完全穿透(incomplete penetrance)的現象。統計顯示隨著擴增的範圍增大,病患發病的年齡也會提早。IT15基因擴增多發生於由父親傳給子代,而導致子代發病提早及症狀更為嚴重,稱為預期現象(anticipation)。鄰近CAG重複片段3'端處,另有一多型性的CCG三核苷重複序列。研究顯示西方的族群HD對偶基因和(CCG)7的多型性有高度的連鎖,而日本族群則和(CCG)10高度連鎖。本研究在分析53個HD患者及172名無親緣關係的正常個體後,發現HD對偶基因CAG重複序列的範圍從38到109,而正常族群的CAG重複序列範圍則是10 ~ 29。另外,在利用多重線性回歸分析發病年齡和CAG重複序列的範圍呈現逆相關性,但鄰近的CCG重複序列對發病年齡的影響並不顯著。利用CCG和兩個鄰近的雙核苷酸重複標記D4S127、D4S412進行單套型的分析,結果顯示三個標記中的兩個與HD基因呈現連鎖不平衡,而單套型分析24個HD家族的個體,發現HD對偶基因有三個主要的單套型佔所有HD染色體的87.5%。這些資料顯示,在台灣地區出現的多種HD單套型顯示疾病的發生可能來自於一次或更多的突變事件所導致。

    PartI:Abstract
    Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder of the elderly. It is characterized by resting tremor, rigidity, bradykinesia, and postural instability. The characteristic pathological features of PD include juxtanuclear ubiquitinated proteinaceous inclusions (Lewy bodies) in neuronal perikarya and neuronal processes, leading to selective loss of dopaminergic neurons in the substantia nigra pars compacta. alpha-synuclein, the main component of Lewy bodies, is a presynaptic protein encoded by the SNCA gene on chromosome 4q21-23. Previously, point mutations A53T and A30P in the highly conserved N-terminal portion of the Alpha-synuclein protein were shown to be more prone to fibrillogenesis in the transgenic and cellular studies, suggesting that Alpha-synuclein may have an important role in the development of PD. Recently, triplication and duplication of the Alpha-synuclein gene were reported to cause PD in several distinct families, indicating that a mere over-expression of wild-type Alpha-synuclein is sufficient to cause the disease. Although causal mutations in the gene for SNCA, parkin, ubiquitin carboxy-terminal hydrolase, DJ-1, PINK1, and LRRK2 were reported, mutations in these genes do not explain the occurrence of disease in most sporadic patients. Other genetic predisposition, most of which is not yet known, is thought to cause PD. In this study, the genetic variation in the SNCA, parkin, and HSP70 genes were investigated in a case-control study to examine the involvement in the susceptibility of Taiwanese to PD. The potential association of the genetic variation was further examined using a functional study. For the SNCA gene, while no statistically significant difference for the Rep1 microsatellite was observed, the C/C genotype (0.0% vs. 2.3%, P=0.0153) and C allele (8.9% vs.14.2%, P=0.0135) of RsaI T>C substitution were found less frequently in PD patients than in controls. In addition, haplotype analysis using Rep1 microsatellite and RsaI T>C substitution revealed significant difference for 0-T haplotype (29.6% vs. 22.6%, P=0.0287) and 0-C haplotype (6.9% vs. 12.1%, P =0.0082). An increased risk of the 0-T haplotype (odds ratio 1.54; 95% CI 0.36-0.90, P=0.0103) or a reduced risk of the 0-C haplotype (odds ratio 0.57; 95% CI 0.36-0.90, P=0.0177) was evident. In addition, the SNCA mRNA expression was different (although not significantly) between PD patients with RsaI T/T and T/C genotypes and reporter constructs containing the RsaI C allele cloned into a luciferase reporter plasmid drove significantly lower transcriptional activity compared with the RsaI T allele in both IMR32 and 293 cells. For the HSP70 genes, there was no statistically significant difference in genotype distribution between patients and controls for the three coding region polymorphisms in the HSP70-2 and HSP70-hom genes. However, for HSP70-1 gene, the overall genotype distribution was significantly different at the -110 A>C site (P = 0.004) and tended to be different at the +190 G>C site (P = 0.012) between patients and controls. The frequencies of the -110 CC and +190 CC genotypes were significantly higher in PD patients than controls (P = 0.001 and 0.006, respectively). Both -110 CC (odds ratio: 2.91; 95% CI: 1.51-5.96; P = 0.002) and +190 CC (odds ratio: 3.59; 95% CI: 1.53-9.88; P = 0.006) genotypes were significantly associated with PD. Reporter constructs containing the -110 A allele drove marginally higher transcriptional activity of HSP70-1 compared with the -110 C allele in both control and heat shocked IMR32 and 293 cells. For the parkin gene, one missense mutations (P437A) in addition to 3 exonic single nucleotide polymorphisms (SNPs) (S167N, R366W, and V380L) were identified. The association of exonic SNPs with the risk of PD was investigated and no statistically significant difference was found between PD patients and normal controls. The results suggest that the genetic variation in the SNCA and HSP70-1 genes, but not the parkin gene, may have a functional relevance to the susceptibility to sporadic PD.

    PartII:Abstract
    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized clinically by mid-life onset, progressive motor impairment, cognitive decline, and psychiatric symptoms. The disease is caused by the abnormal expansion of a CAG trinucleotide repeat (>35) in the first exon of the IT15 gene in chromosome 4p16.3. The normal range of CAG repeats is about 10 ~ 34, and repeats 36 ~ 39 triplets in length are incomplete penetrance. It shows a negative correlation between age of onset and the CAG repeats size. An interesting genetic feature of HD is anticipation which may be defined as worsening disease severity and early disease onset in successive generations. It is caused by CAG repeat expansions in the IT15 gene between generations, particularly when HD is inherited from the father. There is another triplet sequence, a CCG repeat, immediately 3' adjacent to the CAG repeats in the IT15 gene. It had been reported that the western HD chromosomes are strongly associated (CCG)7, and the Japanese HD chromosomes are mostly with (CCG)10. We studied the expanded CAG repeat and adjacent CCG repeat in 53 HD patients and 172 unrelated normal subjects matched to the patients for ethnic origin. The range of the CAG repeat varied from 38 to 109 in the HD patients and from 10 to 29 in the control group. A significant negative correlation was found between the age at onset and the CAG expansion, with no significant influence of the adjacent CCG repeat on the age at onset by multiple regression analysis. Allelic association using CCG repeat and 2 flanking dinucleotide repeat markers (D4S127, D4S412) within 150 kb of the HD gene revealed linkage disequilibrium for 2 of 3 markers. Haplotype analysis of 24 HD families using these markers identified 3 major haplotypes underlying 87.5% of HD chromosomes. The data suggested frequent haplotypes in the Taiwanese population on which one or more mutational events leading to the disease occurred.

    第一部份:目錄 目錄…………………………………………………………………I 中文摘要……………………………………………………………V 英文摘要……………………………………………………………VII 圖次…………………………………………………………………IX 表次…………………………………………………………………X 壹、緒論……………………………………………………………1 一、帕金森氏症(PD)………………………………………………1 (一)臨床特徵………………………………………………………1 (二)流行病學………………………………………………………1 (三)病因學…………………………………………………………2 環境因素…………………………………………………………2 遺傳因素…………………………………………………………3 二、Alpha-synuclein與PD ………………………………………4 (一) Lewy body與Lewy neuritis ………………………………4 (二)突變與PD的相關性……………………………………………5 (三)物種間的比較…………………………………………………6 (四)蛋白質功能的探討……………………………………………6 (五)突變蛋白質的性質研究………………………………………6 (六)啟動子與PD的相關性…………………………………………7 三、蛋白品質調控:分子伴護蛋白(molecule chaperone)……8 (一)分子伴護蛋白…………………………………………………8 (二) HSP70基因……………………………………………………9 (三) HSP70功能……………………………………………………10 (四) HSP70多型性和疾病感受性的相關研究……………………10 四、蛋白品質調控:ubiquitin-proteasome system …………10 (一) ubiquitin-proteasome system……………………………10 (二) parkin基因突變與多型性 …………………………………12 貳、研究目的………………………………………………………14 參、研究方法………………………………………………………15 一、研究樣品………………………………………………………15 二、基因組DNA (genomic DNA)的萃取 …………………………15 三、聚合酶鏈反應(PCR) …………………………………………15 四、SNCA基因多型性分析…………………………………………16 (一) SNCA的NACP-Rep1多型性 ………………………………16 (二) SNCA的RsaI T>C多型性…………………………………16 (三) NACP-Rep1同型合子的定序 ……………………………16 (四) 統計分析…………………………………………………17 五、白血球SNCA mRNA表現量檢測 ………………………………17 (一)同步定量PCR (Real Time PCR) ……………………………17 (二)數據與統計……………………………………………………18 六、SNCA啟動子片段的選殖………………………………………18 (一)多型性啟動子片段的製備……………………………………18 (二)接合反應(ligation)…………………………………………18 (三)轉形勝任細胞(competent cell)之製備……………………18 (四)細菌的轉形作用(transformation)…………………………19 (五)質體DNA的小量製備與DNA定序………………………………19 (六)特定位置的點突變(site-directed mutagenesis) ………20 (七)質體DNA的大量製備及純化 …………………………………20 七、多型性啟動子重組質體的構築………………………………21 (一) pGL3 luciferase報導基因系統的修改……………………21 (二) pGL3-TK多型性啟動子重組質體的構築與確認……………21 八、多型性啟動子重組質體的轉錄活性分析……………………22 (一) 293及IMR32細胞株的培養 …………………………………22 (二)多型性啟動子重組質體的轉移(transfection)……………22 (三)轉移之重組質體的轉錄活性測定……………………………23 (四)統計分析………………………………………………………23 九、HSP70基因家族多型性分析 …………………………………23 (一) HSP70-1的-110 A>C和+190 G>C多型性……………………23 (二) HSP70-2的+1267 A>G多型性 ………………………………24 (三) HSP70-2的+2074 G>C多型性 ………………………………24 (四) HSP70-hom的+2437 T>C多型性 ……………………………24 (五)統計分析………………………………………………………24 十、HSP70-1啟動子多型性的功能性分析 ………………………24 (一) HSP70-1基因多型性片段的選殖……………………………25 (二) HSP70-1啟動子報導質體的構築……………………………25 (三) HSP70-1啟動子報導質體的轉錄活性分析…………………25 十一、parkin基因突變篩檢………………………………………25 十二、parkin基因多型性分析……………………………………26 (一) parkin基因的S167N (G>A)多型性 ……………………26 (二) parkin基因的R366W (C>T)多型性 ……………………26 (三) parkin基因的V380L (G>C)多型性 ……………………26 (四)統計分析………………………………………………………26 肆、結果……………………………………………………………27 一、SNCA基因………………………………………………………27 (一) NACP-Rep1多型性分析………………………………………27 (二) RsaI T>C多型性分析 ………………………………………27 (三)多型性單套型分析……………………………………………28 (四) NACP-Rep1多型性同型合子定序分析………………………28 (五) NACP-Rep1及RsaI T>C多型性對白血球SNCA表現的影響…28 (六) RsaI T>C多型性的功能性分析 ……………………………28 二、HSP70基因 ……………………………………………………29 (一) HSP70家族基因多型性分析…………………………………29 (二) HSP70家族基因多型性之單套型分析………………………30 (三) HSP70-1多型性的功能性分析………………………………30 三、parkin基因……………………………………………………30 (一) PD個體parkin突變的篩檢 …………………………………31 (二) parkin基因的多型性分析 …………………………………31 伍、討論……………………………………………………………32 一、SNCA啟動子多型性影響個體對PD的易感受性………………32 二、HSP70-1基因多型性影響個體對PD的感受 …………………33 三、異型合子的parkin基因突變可能影響少數晚發型PD的病理機制……………………………………………………………………35 四、總結……………………………………………………………36 陸、參考文獻………………………………………………………37 圖表次 圖一、蛋白質在細胞內的質/量調控系統 ………………………48 圖二、分子伴護蛋白(molecular chaperone)作用機制 ………49 圖三、Ubiquitin-proteasome system的分子機制 ……………50 圖四、目前在parkin基因所發現的突變…………………………51 圖五、SNCA基因NACP-Rep1多型性的DNA自動定序儀Genotyping結果……………………………………………………………………52 圖六、SNCA基因RsaI T>C多型性檢測之洋菜膠體電泳照片……53 圖七、同步定量PCR分析白血球-synuclein/-actin mRNA的 相對表現量…………………………………………………………54 圖八、SNCA基因的RsaI多型性的啟動子報導質體的構築………55 圖九、pGL3-TK質體輿圖 …………………………………………56 圖十、NACP-Rep1啟動子多型性的功能性分析結果 ……………57 圖十一、HSP70-1基因-110 A>C和+190 G>C多型性檢測之SSCP膠 體電泳照片…………………………………………………………58 圖十二、HSP70-2基因+1267 A>G多型性檢測之洋菜膠體電泳照片……………………………………………………………………59 圖十三、HSP70-2基因+2074 G>C多型性檢測之洋菜膠體電泳照片……………………………………………………………………60 圖十四、HSP70-hom基因+2437 T>C多型性檢測之洋菜膠體電泳照片……………………………………………………………………61 圖十五、HSP70-1基因的-110 A>C及+190 G>C多型性的啟動子報導 質體的構築…………………………………………………………62 圖十六、HSP70-1啟動子多型性的功能性分析結果 ……………63 圖十七、H261患者parkin基因P437A突變檢測 …………………64 圖十八、Parkin基因S167N多型性檢測之洋菜膠體電泳照片 …65 圖十九、parkin基因R366W多型性檢測之洋菜膠體電泳照片 …66 圖二十、parkin基因V380L多型性檢測之洋菜膠體電泳照片 …67 表一、目前確認與家族性PD相關的遺傳因子。…………………68 表二、增幅SNCA基因NACP-Rep1片段、選殖啟動子片段、特定 位置點突變及同步定量PCR的引子對 ……………………………69 表三、增幅HSP70-1、HSP70-2及HSP70-hom基因多型性的引子 對……………………………………………………………………70 表四、增幅parkin基因12個表現子的引子對……………………71 表五、PD患者族群和控制組SNCA的NACP-Rep1多型性的分佈及 其相關性……………………………………………………………72 表六、PD患者族群和控制組SNCA的RsaI多型性的分佈及其相關性……………………………………………………………………73 表七、NACP-Rep1多型性同型合子個體DNA定序結果……………74 表八、PD患者族群和控制組SNCA的NACP-Rep1及RsaI的多型性 單套型分析結果……………………………………………………75 表九、PD患者族群和控制組HSP70基因多型性的分析結果 ……76 表十、HSP70-1 -110 A>C、+190 G>C和HSP70-1 -110 A>C、 HSP70-2 +1267 A>G多型性的單套型分析 ………………………78 表十一、PD患者族群和控制組parkin基因多型性的分析結果…79 第二部分: 目錄…………………………………………………………………I 中文摘要……………………………………………………………III 英文摘要……………………………………………………………IV 圖表次………………………………………………………………V 壹、緒論……………………………………………………………80 一、多麩醯胺症(polyglutamine disease) ……………………80 二、杭丁頓氏症(HD)………………………………………………80 (一)臨床症狀………………………………………………………80 (二)致病基因………………………………………………………81 (三) huntingtin的功能 …………………………………………82 貳、研究目的………………………………………………………84 參、研究方法………………………………………………………85 一、研究樣品………………………………………………………85 二、基因組DNA(genomic DNA)的萃取……………………………85 三、聚合酶鏈反應(PCR) …………………………………………85 四、基因型分析(genotyping)……………………………………85 (一) CAG重複序列的基因型判定…………………………………85 (二) CCG重複序列的基因型判定…………………………………86 (三) D4S127的基因型判定 ………………………………………86 (四) D4S412的基因型判定 ………………………………………86 五、統計分析………………………………………………………86 肆、結果……………………………………………………………88 一、HD基因CAG重複分佈 …………………………………………88 二、突變基因的單套型分析………………………………………88 伍、討論……………………………………………………………90 一、IT15基因的分子診斷…………………………………………90 二、HD突變對偶基因的起源………………………………………90 三、CAG、CCG重複擴增和發病年齡相關性………………………90 陸、參考文獻………………………………………………………92 圖表次 圖一、洋菜膠電泳檢查擴增的IT15基因…………………………95 圖二、CAG重複序列的基因型判定 ………………………………96 圖三、CCG重複序列的基因型判定 ………………………………97 圖四、D4S127的基因型判定………………………………………98 圖五、D4S412的基因型判定………………………………………99 圖六、CAG重複序列的分佈情形及CAG重複次數和發病年齡相關性……………………………………………………………………100 表一、本研究所用之引子對及PCR的增幅條件 …………………101 表二、HD及控制組染色體CCG重複序列及鄰近之雙核苷微衛星標 記之對偶基因頻率…………………………………………………102 表三、HD患者及控制組染色體之單套型分析……………………103

    第一部份:
    馮清世(2003):農藥暴露及GTS基因多型性與巴金森氏病的致病感受性的研究。台北市:國立台灣大學醫學院臨床醫學研究所碩士論文。

    Abbas, N., Lucking, C. B., Ricard, S., Durr, A., Bonifati, V., De Michele, G., Bouley, S., Vaughan, J. R., Gasser, T., Marconi, R., et al. (1999). A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson's Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson's Disease. Hum Mol Genet 8, 567-574

    Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., Shinsky, N., Verdugo, J. M., Armanini, M., Ryan, A., et al. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239-252.

    Abravaya, K., Phillips, B., and Morimoto, R. I. (1991). Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol Cell Biol 11, 586-592.

    Adams, J. (2003). The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 Suppl 1, 3-9.

    Aron, Y., Busson, M., Polla, B. S., Dusser, D., Lockhart, A., Swierczewski, E., and Favatier, F. (1999). Analysis of hsp70 gene polymorphism in allergic asthma. Allergy 54, 165-170.

    Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M., and Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865-868.

    Barbeau, A., Roy, M., and Cloutier, T. (1986). Smoking, cancer, and Parkinson's disease. Ann Neurol 20, 105-106.

    Bharucha, N. E., Bharucha, E. P., Bharucha, A. E., Bhise, A. V., and Schoenberg, B. S. (1988). Prevalence of Parkinson's disease in the Parsi community of Bombay, India. Arch Neurol 45, 1321-1323.

    Bhatt, M. H., Elias, M. A., and Mankodi, A. K. (1999). Acute and reversible parkinsonism due to organophosphate pesticide intoxication: five cases. Neurology 52, 1467-1471.

    Bocchetta, A., and Corsini, G. U. (1986). Parkinson's disease and pesticides. Lancet 2, 1163.

    Bonifati, V., Fabrizio, E., Vanacore, N., De Mari, M., and Meco, G. (1995). Familial Parkinson's disease: a clinical genetic analysis. Can J Neurol Sci 22, 272-279.

    Bukau, B., and Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366.

    Calne, D. B., Snow, B. J., and Lee, C. (1992). Criteria for diagnosing Parkinson's disease. Ann Neurol 32 Suppl, S125-127.

    Cascino, I., Sorrentino, R., and Tosi, R. (1993). Strong genetic association between HLA-DR3 and a polymorphic variation in the regulatory region of the HSP70-1 gene. Immunogenetics 37, 177-182.

    Chai, Y., Koppenhafer, S. L., Shoesmith, S. J., Perez, M. K., and Paulson, H. L. (1999). Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum Mol Genet 8, 673-682.

    Chan, D. K., Mellick, G., Cai, H., Wang, X. L., Ng, P. W., Pang, C. P., Woo, J., and Kay, R. (2000a). The alpha-synuclein gene and Parkinson disease in a Chinese population. Arch Neurol 57, 501-503.

    Chan, H. Y., Warrick, J. M., Gray-Board, G. L., Paulson, H. L., and Bonini, N. M. (2000b). Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9, 2811-2820.

    Chan, P., Tanner, C. M., Jiang, X., and Langston, J. W. (1998). Failure to find the alpha-synuclein gene missense mutation (G209A) in 100 patients with younger onset Parkinson's disease. Neurology 50, 513-514.

    Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., et al. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167-1169.

    Chen, R. C., Chang, S. F., Su, C. L., Chen, T. H., Yen, M. F., Wu, H. M., Chen, Z. Y., and Liou, H. H. (2001). Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology 57, 1679-1686.

    Chiba-Falek, O., and Nussbaum, R. L. (2001). Effect of allelic variation at the NACP-Rep1 repeat upstream of the alpha-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Hum Mol Genet 10, 3101-3109.

    Conley, S. C., and Kirchner, J. T. (1999). Parkinson's disease--the shaking palsy. Underlying factors, diagnostic considerations, and clinical course. Postgrad Med 106, 39-42, 45-36, 49-50 passim.

    Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Harper, J. D., Williamson, R. E., and Lansbury, P. T., Jr. (2000). Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920, 42-45.

    Cummings, C. J., Mancini, M. A., Antalffy, B., DeFranco, D. B., Orr, H. T., and Zoghbi, H. Y. (1998). Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19, 148-154.

    Cummings, C. J., Sun, Y., Opal, P., Antalffy, B., Mestril, R., Orr, H. T., Dillmann, W. H., and Zoghbi, H. Y. (2001). Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10, 1511-1518.

    da Costa, C. A., Ancolio, K., and Checler, F. (2000). Wild-type but not Parkinson's disease-related ala-53 --> Thr mutant alpha -synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275, 24065-24069.

    De Michele, G., Filla, A., Volpe, G., De Marco, V., Gogliettino, A., Ambrosio, G., Marconi, R., Castellano, A. E., and Campanella, G. (1996). Environmental and genetic risk factors in Parkinson's disease: a case-control study in southern Italy. Mov Disord 11, 17-23.

    de Rijk, M. C., Tzourio, C., Breteler, M. M., Dartigues, J. F., Amaducci, L., Lopez-Pousa, S., Manubens-Bertran, J. M., Alperovitch, A., and Rocca, W. A. (1997). Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson's disease. J Neurol Neurosurg Psychiatry 62, 10-15.

    Esaki, M., Furuse, M., Matsumoto, T., Aoyagi, K., Jo, Y., Yamagata, H., Nakano, H., and Fujishima, M. (1999). Polymorphism of heat-shock protein gene HSP70-2 in Crohn disease: possible genetic marker for two forms of Crohn disease. Scand J Gastroenterol 34, 703-707.

    Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D. S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D., and Langston, J. W. (2004). Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55, 174-179.

    Farrer, M., Maraganore, D. M., Lockhart, P., Singleton, A., Lesnick, T. G., de Andrade, M., West, A., de Silva, R., Hardy, J., and Hernandez, D. (2001). alpha-Synuclein gene haplotypes are associated with Parkinson's disease. Hum Mol Genet 10, 1847-1851.

    Favatier, F., Jacquier-Sarlin, M. R., Swierczewski, E., and Polla, B. S. (1999). Polymorphism in the regulatory sequence of the human hsp70-1 gene does not affect heat shock factor binding or heat shock protein synthesis. Cell Mol Life Sci 56, 701-708.

    Feany, M. B., and Bender, W. W. (2000). A Drosophila model of Parkinson's disease. Nature 404, 394-398.

    Fernandez-Funez, P., Nino-Rosales, M. L., de Gouyon, B., She, W. C., Luchak, J. M., Martinez, P., Turiegano, E., Benito, J., Capovilla, M., Skinner, P. J., et al. (2000). Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408, 101-106.

    Foroud, T., Uniacke, S. K., Liu, L., Pankratz, N., Rudolph, A., Halter, C., Shults, C., Marder, K., Conneally, P. M., and Nichols, W. C. (2003). Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease. Neurology 60, 796-801.

    Fraile, A., Nieto, A., Mataran, L., and Martin, J. (1998). HSP70 gene polymorphisms in ankylosing spondylitis. Tissue Antigens 51, 382-385.

    Gibb, W. R., and Lees, A. J. (1991). Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry 54, 388-396.

    Goedert, M., and Spillantini, M. G. (1998). Lewy body diseases and multiple system atrophy as alpha-synucleinopathies. Mol Psychiatry 3, 462-465.

    Hartl, F. U., and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.

    Hattori, N., Matsumine, H., Asakawa, S., Kitada, T., Yoshino, H., Elibol, B., Brookes, A. J., Yamamura, Y., Kobayashi, T., Wang, M., et al. (1998). Point mutations (Thr240Arg and Gln311Stop) [correction of Thr240Arg and Ala311Stop] in the Parkin gene. Biochem Biophys Res Commun 249, 754-758.

    Hattori, N., Shimura, H., Kubo, S., Wang, M., Shimizu, N., Tanaka, K., and Mizuno, Y. (2000). Importance of familial Parkinson's disease and parkinsonism to the understanding of nigral degeneration in sporadic Parkinson's disease. J Neural Transm Suppl, 101-116.

    Hedrich, K., Eskelson, C., Wilmot, B., Marder, K., Harris, J., Garrels, J., Meija-Santana, H., Vieregge, P., Jacobs, H., Bressman, S. B., et al. (2004). Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 19, 1146-1157.

    Ho, S. C., Woo, J., and Lee, C. M. (1989). Epidemiologic study of Parkinson's disease in Hong Kong. Neurology 39, 1314-1318.

    Hoenicka, J., Vidal, L., Morales, B., Ampuero, I., Jimenez-Jimenez, F. J., Berciano, J., del Ser, T., Jimenez, A., Ruiz, P. G., and de Yebenes, J. G. (2002). Molecular findings in familial Parkinson disease in Spain. Arch Neurol 59, 966-970.

    Hu, C. J., Sung, S. M., Liu, H., and Chang, J. G. (1999). No mutation of G209A in the alpha-synuclein gene in sporadic Parkinson's disease among Taiwan Chinese. Eur Neurol 41, 85-87.

    Hu, C. J., Sung, S. M., Liu, H. C., Lee, C. C., Tsai, C. H., and Chang, J. G. (2000). Polymorphisms of the parkin gene in sporadic Parkinson's disease among Chinese in Taiwan. Eur Neurol 44, 90-93.

    Huang, Y., Cheung, L., Rowe, D., and Halliday, G. (2004). Genetic contributions to Parkinson's disease. Brain Res Brain Res Rev 46, 44-70.

    Imai, Y., Soda, M., and Takahashi, R. (2000). Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275, 35661-35664.

    Jalbout, M., Bouaouina, N., Gargouri, J., Corbex, M., Ben Ahmed, S., and Chouchane, L. (2003). Polymorphism of the stress protein HSP70-2 gene is associated with the susceptibility to the nasopharyngeal carcinoma. Cancer Lett 193, 75-81.

    Jenco, J. M., Rawlingson, A., Daniels, B., and Morris, A. J. (1998). Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37, 4901-4909.

    Kaarniranta, K., Oksala, N., Karjalainen, H. M., Suuronen, T., Sistonen, L., Helminen, H. J., Salminen, A., and Lammi, M. J. (2002). Neuronal cells show regulatory differences in the hsp70 gene response. Brain Res Mol Brain Res 101, 136-140.

    Kalish, R. B., Vardhana, S., Gupta, M., Perni, S. C., Chasen, S. T., and Witkin, S. S. (2004). Polymorphisms in the tumor necrosis factor-alpha gene at position -308 and the inducible 70 kd heat shock protein gene at position +1267 in multifetal pregnancies and preterm premature rupture of fetal membranes. Am J Obstet Gynecol 191, 1368-1374.

    Kazemi-Esfarjani, P., and Benzer, S. (2000). Genetic suppression of polyglutamine toxicity in Drosophila. Science 287, 1837-1840.

    Khan, N., Graham, E., Dixon, P., Morris, C., Mander, A., Clayton, D., Vaughan, J., Quinn, N., Lees, A., Daniel, S., et al. (2001). Parkinson's disease is not associated with the combined alpha-synuclein/apolipoprotein E susceptibility genotype. Ann Neurol 49, 665-668.

    Kingsbury, A. E., Daniel, S. E., Sangha, H., Eisen, S., Lees, A. J., and Foster, O. J. (2004). Alteration in alpha-synuclein mRNA expression in Parkinson's disease. Mov Disord 19, 162-170.

    Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605-608.

    Klein, C., Schumacher, K., Jacobs, H., Hagenah, J., Kis, B., Garrels, J., Schwinger, E., Ozelius, L., Pramstaller, P., Vieregge, P., and Kramer, P. L. (2000). Association studies of Parkinson's disease and parkin polymorphisms. Ann Neurol 48, 126-127.

    Koller, W., Vetere-Overfield, B., Gray, C., Alexander, C., Chin, T., Dolezal, J., Hassanein, R., and Tanner, C. (1990). Environmental risk factors in Parkinson's disease. Neurology 40, 1218-1221.

    Kruger, R., Vieira-Saecker, A. M., Kuhn, W., Berg, D., Muller, T., Kuhnl, N., Fuchs, G. A., Storch, A., Hungs, M., Woitalla, D., et al. (1999). Increased susceptibility to sporadic Parkinson's disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann Neurol 45, 611-617.

    Langston, J. W. (1987). MPTP: insights into the etiology of Parkinson's disease. Eur Neurol 26 Suppl 1, 2-10.

    Lazzarini, A. M., Myers, R. H., Zimmerman, T. R., Jr., Mark, M. H., Golbe, L. I., Sage, J. I., Johnson, W. G., and Duvoisin, R. C. (1994). A clinical genetic study of Parkinson's disease: evidence for dominant transmission. Neurology 44, 499-506.

    Lee, M. K., Stirling, W., Xu, Y., Xu, X., Qui, D., Mandir, A. S., Dawson, T. M., Copeland, N. G., Jenkins, N. A., and Price, D. L. (2002). Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A 99, 8968-8973.

    Leroy, E., Anastasopoulos, D., Konitsiotis, S., Lavedan, C., and Polymeropoulos, M. H. (1998a). Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease. Hum Genet 103, 424-427.

    Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M. J., Jonnalagada, S., Chernova, T., et al. (1998b). The ubiquitin pathway in Parkinson's disease. Nature 395, 451-452.

    Lev, N., and Melamed, E. (2001). Heredity in Parkinson's disease: new findings. Isr Med Assoc J 3, 435-438.

    Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y., and Chen, R. C. (1997). Environmental risk factors and Parkinson's disease: a case-control study in Taiwan. Neurology 48, 1583-1588.

    Lu, C. S., Wu, J. C., Tsai, C. H., Chen, R. S., Chou, Y. H., Hattori, N., Yoshino, H., and Mizuno, Y. (2001). Clinical and genetic studies on familial parkinsonism: the first report on a parkin gene mutation in a Taiwanese family. Mov Disord 16, 164-166.

    Lucking, C. B., Abbas, N., Durr, A., Bonifati, V., Bonnet, A. M., de Broucker, T., De Michele, G., Wood, N. W., Agid, Y., and Brice, A. (1998). Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. The European Consortium on Genetic Susceptibility in Parkinson's Disease and the French Parkinson's Disease Genetics Study Group. Lancet 352, 1355-1356.

    Lucking, C. B., Durr, A., Bonifati, V., Vaughan, J., De Michele, G., Gasser, T., Harhangi, B. S., Meco, G., Denefle, P., Wood, N. W., et al. (2000). Association between early-onset Parkinson's disease and mutations in the parkin gene. French Parkinson's Disease Genetics Study Group. N Engl J Med 342, 1560-1567.

    Marini, M., Lapalombella, R., Canaider, S., Farina, A., Monti, D., De Vescovi, V., Morellini, M., Bellizzi, D., Dato, S., De Benedictis, G., et al. (2004). Heat shock response by EBV-immortalized B-lymphocytes from centenarians and control subjects: a model to study the relevance of stress response in longevity. Exp Gerontol 39, 83-90.

    Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A., and Mucke, L. (2000). Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265-1269.

    Mellick, G. D., Buchanan, D. D., Hattori, N., Brookes, A. J., Mizuno, Y., Le Couteur, D. G., and Silburn, P. A. (2001). The parkin gene S/N167 polymorphism in Australian Parkinson's disease patients and controls. Parkinsonism Relat Disord 7, 89-91.

    Miller, D. W., Hague, S. M., Clarimon, J., Baptista, M., Gwinn-Hardy, K., Cookson, M. R., and Singleton, A. B. (2004). Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62, 1835-1838.

    Milner, C. M., and Campbell, R. D. (1990). Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 32, 242-251.

    Milner, C. M., and Campbell, R. D. (1992). Polymorphic analysis of the three MHC-linked HSP70 genes. Immunogenetics 36, 357-362.

    Montgomery, E. B., Jr. (1995). Heavy metals and the etiology of Parkinson's disease and other movement disorders. Toxicology 97, 3-9.

    Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Sitney, K., Denis, P., et al. (1999). Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274, 9843-9846.

    Neystat, M., Lynch, T., Przedborski, S., Kholodilov, N., Rzhetskaya, M., and Burke, R. E. (1999). Alpha-synuclein expression in substantia nigra and cortex in Parkinson's disease. Mov Disord 14, 417-422.

    Nichols, W. C., Pankratz, N., Uniacke, S. K., Pauciulo, M. W., Halter, C., Rudolph, A., Conneally, P. M., and Foroud, T. (2002). Linkage stratification and mutation analysis at the Parkin locus identifies mutation positive Parkinson's disease families. J Med Genet 39, 489-492.

    Niino, M., Kikuchi, S., Fukazawa, T., Yabe, I., Sasaki, H., and Tashiro, K. (2001). Heat shock protein 70 gene polymorphism in Japanese patients with multiple sclerosis. Tissue Antigens 58, 93-96.

    Nisipeanu, P., Inzelberg, R., Blumen, S. C., Carasso, R. L., Hattori, N., Matsumine, H., and Mizuno, Y. (1999). Autosomal-recessive juvenile parkinsonism in a Jewish Yemenite kindred: mutation of Parkin gene. Neurology 53, 1602-1604.

    Okochi, M., Walter, J., Koyama, A., Nakajo, S., Baba, M., Iwatsubo, T., Meijer, L., Kahle, P. J., and Haass, C. (2000). Constitutive phosphorylation of the Parkinson's disease associated alpha-synuclein. J Biol Chem 275, 390-397.

    Oliveira, S. A., Scott, W. K., Nance, M. A., Watts, R. L., Hubble, J. P., Koller, W. C., Lyons, K. E., Pahwa, R., Stern, M. B., Hiner, B. C., et al. (2003). Association study of Parkin gene polymorphisms with idiopathic Parkinson disease. Arch Neurol 60, 975-980.

    Oliveri, R. L., Zappia, M., Annesi, G., Bosco, D., Annesi, F., Spadafora, P., Pasqua, A. A., Tomaino, C., Nicoletti, G., Pirritano, D., et al. (2001). The parkin gene is not involved in late-onset Parkinson's disease. Neurology 57, 359-362.

    Pals, P., Lincoln, S., Manning, J., Heckman, M., Skipper, L., Hulihan, M., Van den Broeck, M., De Pooter, T., Cras, P., Crook, J., et al. (2004). alpha-Synuclein promoter confers susceptibility to Parkinson's disease. Ann Neurol 56, 591-595.

    Parsell, D. A., and Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27, 437-496.

    Parsian, A., Racette, B., Zhang, Z. H., Chakraverty, S., Rundle, M., Goate, A., and Perlmutter, J. S. (1998). Mutation, sequence analysis, and association studies of alpha-synuclein in Parkinson's disease. Neurology 51, 1757-1759.

    Payami, H., Larsen, K., Bernard, S., and Nutt, J. (1994). Increased risk of Parkinson's disease in parents and siblings of patients. Ann Neurol 36, 659-661.

    Pociot, F., Ronningen, K. S., and Nerup, J. (1993). Polymorphic analysis of the human MHC-linked heat shock protein 70 (HSP70-2) and HSP70-Hom genes in insulin-dependent diabetes mellitus (IDDM). Scand J Immunol 38, 491-495.

    Polymeropoulos, M. H., Higgins, J. J., Golbe, L. I., Johnson, W. G., Ide, S. E., Di Iorio, G., Sanges, G., Stenroos, E. S., Pho, L. T., Schaffer, A. A., et al. (1996). Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science 274, 1197-1199.

    Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047.

    Rajalingam, R., Mehra, N. K., and Singal, D. P. (2000). Polymorphism in heat-shock protein 70-1 (HSP70-1) gene promoter region and susceptibility to tuberculoid leprosy and pulmonary tuberculosis in Asian Indians. Indian J Exp Biol 38, 658-662.

    Ramos-Arroyo, M. A., Feijoo, E., Sanchez-Valverde, F., Aranburu, E., Irisarri, N., Olivera, J. E., and Valiente, A. (2001). Heat-shock protein 70-1 and HLA class II gene polymorphisms associated with celiac disease susceptibility in Navarra (Spain). Hum Immunol 62, 821-825.

    Saigoh, K., Wang, Y. L., Suh, J. G., Yamanishi, T., Sakai, Y., Kiyosawa, H., Harada, T., Ichihara, N., Wakana, S., Kikuchi, T., and Wada, K. (1999). Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23, 47-51.

    Satoh, J., and Kuroda, Y. (1999). Association of codon 167 Ser/Asn heterozygosity in the parkin gene with sporadic Parkinson's disease. Neuroreport 10, 2735-2739.

    Scherman, D., Desnos, C., Darchen, F., Pollak, P., Javoy-Agid, F., and Agid, Y. (1989). Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann Neurol 26, 551-557.

    Schroder, O., Schulte, K. M., Ostermann, P., Roher, H. D., Ekkernkamp, A., and Laun, R. A. (2003). Heat shock protein 70 genotypes HSPA1B and HSPA1L influence cytokine concentrations and interfere with outcome after major injury. Crit Care Med 31, 73-79.

    Sherman, M. Y., and Muchowski, P. J. (2003). Making yeast tremble: yeast models as tools to study neurodegenerative disorders. Neuromolecular Med 4, 133-146.

    Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K., and Suzuki, T. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25, 302-305.

    Shimura, H., Schlossmacher, M. G., Hattori, N., Frosch, M. P., Trockenbacher, A., Schneider, R., Mizuno, Y., Kosik, K. S., and Selkoe, D. J. (2001). Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293, 263-269.

    Singh, R., Kolvraa, S., Bross, P., Gregersen, N., Andersen Nexo, B., Frederiksen, H., Christensen, K., and Rattan, S. I. (2004). Association between low self-rated health and heterozygosity for -110A > C polymorphism in the promoter region of HSP70-1 in aged Danish twins. Biogerontology 5, 169-176.

    Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841.

    Snyder, S. H., and D'Amato, R. J. (1986). MPTP: a neurotoxin relevant to the pathophysiology of Parkinson's disease. The 1985 George C. Cotzias lecture. Neurology 36, 250-258.

    Spadafora, P., Annesi, G., Pasqua, A. A., Serra, P., Ciro Candiano, I. C., Carrideo, S., Tarantino, P., Civitelli, D., De Marco, E. V., Nicoletti, G., et al. (2003). NACP-REP1 polymorphism is not involved in Parkinson's disease: a case-control study in a population sample from southern Italy. Neurosci Lett 351, 75-78.

    Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature 388, 839-840.

    Stern, M., Dulaney, E., Gruber, S. B., Golbe, L., Bergen, M., Hurtig, H., Gollomp, S., and Stolley, P. (1991). The epidemiology of Parkinson's disease. A case-control study of young-onset and old-onset patients. Arch Neurol 48, 903-907.

    Tabrizi, S. J., Orth, M., Wilkinson, J. M., Taanman, J. W., Warner, T. T., Cooper, J. M., and Schapira, A. H. (2000). Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum Mol Genet 9, 2683-2689.

    Tan, E. K., Chai, A., Teo, Y. Y., Zhao, Y., Tan, C., Shen, H., Chandran, V. R., Teoh, M. L., Yih, Y., Pavanni, R., et al. (2004). Alpha-synuclein haplotypes implicated in risk of Parkinson's disease. Neurology 62, 128-131.

    Tan, E. K., Chandran, V. R., Fook-Chong, S., Shen, H., Yew, K., Teoh, M. L., Yuen, Y., and Zhao, Y. (2005). Alpha-synuclein mRNA expression in sporadic Parkinson's disease. Mov Disord 20, 620-623.

    Tan, E. K., Matsuura, T., Nagamitsu, S., Khajavi, M., Jankovic, J., and Ashizawa, T. (2000). Polymorphism of NACP-Rep1 in Parkinson's disease: an etiologic link with essential tremor? Neurology 54, 1195-1198.

    Vargas-Alarcon, G., Londono, J. D., Hernandez-Pacheco, G., Gamboa, R., Castillo, E., Pacheco-Tena, C., Cardiel, M. H., Granados, J., and Burgos-Vargas, R. (2002). Heat shock protein 70 gene polymorphisms in Mexican patients with spondyloarthropathies. Ann Rheum Dis 61, 48-51.

    Vaughan, J. R., Farrer, M. J., Wszolek, Z. K., Gasser, T., Durr, A., Agid, Y., Bonifati, V., DeMichele, G., Volpe, G., Lincoln, S., et al. (1998). Sequencing of the alpha-synuclein gene in a large series of cases of familial Parkinson's disease fails to reveal any further mutations. The European Consortium on Genetic Susceptibility in Parkinson's Disease (GSPD). Hum Mol Genet 7, 751-753.

    Vieregge, P., and Heberlein, I. (1995). Increased risk of Parkinson's disease in relatives of patients. Ann Neurol 37, 685.

    Vinasco, J., Beraun, Y., Nieto, A., Fraile, A., Pareja, E., Mataran, L., and Martin, J. (1997). Heat shock protein 70 gene polymorphisms in rheumatoid arthritis. Tissue Antigens 50, 71-73.

    Waelter, S., Boeddrich, A., Lurz, R., Scherzinger, E., Lueder, G., Lehrach, H., and Wanker, E. E. (2001). Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12, 1393-1407.

    Wang, M., Hattori, N., Matsumine, H., Kobayashi, T., Yoshino, H., Morioka, A., Kitada, T., Asakawa, S., Minoshima, S., Shimizu, N., and Mizuno, Y. (1999). Polymorphism in the parkin gene in sporadic Parkinson's disease. Ann Neurol 45, 655-658.

    Wang, W. Z., Fang, X. H., Cheng, X. M., Jiang, D. H., and Lin, Z. J. (1993). A case-control study on the environmental risk factors of Parkinson's disease in Tianjin, China. Neuroepidemiology 12, 209-218.

    Wang, Y. S., Shi, Y. M., Wu, Z. Y., He, Y. X., and Zhang, B. Z. (1991). Parkinson's disease in China. Coordinational Group of Neuroepidemiology, PLA. Chin Med J (Engl) 104, 960-964.

    Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L., and Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23, 425-428.

    Weissman, A. M. (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2, 169-178.

    Wu, R. M., Shan, D. E., Sun, C. M., Liu, R. S., Hwu, W. L., Tai, C. H., Hussey, J., West, A., Gwinn-Hardy, K., Hardy, J., et al. (2002). Clinical, 18F-dopa PET, and genetic analysis of an ethnic Chinese kindred with early-onset parkinsonism and parkin gene mutations. Mov Disord 17, 670-675.

    Xia, Y., Rohan de Silva, H. A., Rosi, B. L., Yamaoka, L. H., Rimmler, J. B., Pericak-Vance, M. A., Roses, A. D., Chen, X., Masliah, E., DeTeresa, R., et al. (1996). Genetic studies in Alzheimer's disease with an NACP/alpha-synuclein polymorphism. Ann Neurol 40, 207-215.

    Yeh, F, C., and Boyle, T. (1997). Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian Botang 129-157.

    Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., et al. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55, 164-173.

    Zhang, Y., Gao, J., Chung, K. K., Huang, H., Dawson, V. L., and Dawson, T. M. (2000). Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 97, 13354-13359.

    Zhang, Z. X., and Roman, G. C. (1993). Worldwide occurrence of Parkinson's disease: an updated review. Neuroepidemiology 12, 195-208.

    Zouari Bouassida, K., Chouchane, L., Jellouli, K., Cherif, S., Haddad, S., Gabbouj, S., and Danguir, J. (2004). Polymorphism of stress protein HSP70-2 gene in Tunisians: susceptibility implications in type 2 diabetes and obesity. Diabetes Metab 30, 175-180.

    第二部分:
    The Huntington's Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971-983.

    Andrew, S. E., Goldberg, Y. P., Theilmann, J., Zeisler, J., and Hayden, M. R. (1994). A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum Mol Genet 3, 65-67.

    Atac, F. B., Elibol, B., and Schaefer, F. (1999). The genetic analysis of Turkish patients with Huntington's disease. Acta Neurol Scand 100, 195-198.

    Britton, J. W., Uitti, R. J., Ahlskog, J. E., Robinson, R. G., Kremer, B., and Hayden, M. R. (1995). Hereditary late-onset chorea without significant dementia: genetic evidence for substantial phenotypic variation in Huntington's disease. Neurology 45, 443-447.

    Burke, J. R., Enghild, J. J., Martin, M. E., Jou, Y. S., Myers, R. M., Roses, A. D., Vance, J. M., and Strittmatter, W. J. (1996). Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2, 347-350.

    Chattopadhyay, B., Ghosh, S., Gangopadhyay, P. K., Das, S. K., Roy, T., Sinha, K. K., Jha, D. K., Mukherjee, S. C., Chakraborty, A., Singhal, B. S., et al. (2003). Modulation of age at onset in Huntington's disease and spinocerebellar ataxia type 2 patients originated from eastern India. Neurosci Lett 345, 93-96.

    DiFiglia, M., Sapp, E., Chase, K., Schwarz, C., Meloni, A., Young, C., Martin, E., Vonsattel, J. P., Carraway, R., Reeves, S. A., and et al. (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075-1081.

    Dragatsis, I., Efstratiadis, A., and Zeitlin, S. (1998). Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development 125, 1529-1539.

    Dragatsis, I., Levine, M. S., and Zeitlin, S. (2000). Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26, 300-306.

    Duyao, M. P., Auerbach, A. B., Ryan, A., Persichetti, F., Barnes, G. T., McNeil, S. M., Ge, P., Vonsattel, J. P., Gusella, J. F., Joyner, A. L., and et al. (1995). Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407-410.

    Faber, P. W., Barnes, G. T., Srinidhi, J., Chen, J., Gusella, J. F., and MacDonald, M. E. (1998). Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7, 1463-1474.

    Garcia-Planells, J., Burguera, J. A., Solis, P., Millan, J. M., Ginestar, D., Palau, F., and Espinos, C. (2005). Ancient origin of the CAG expansion causing Huntington disease in a Spanish population. Hum Mutat 25, 453-459.

    Hecimovic, S., Klepac, N., Vlasic, J., Vojta, A., Janko, D., Skarpa-Prpic, I., Canki-Klain, N., Markovic, D., Bozikov, J., Relja, M., and Pavelic, K. (2002). Genetic background of Huntington disease in Croatia: Molecular analysis of CAG, CCG, and Delta2642 (E2642del) polymorphisms. Hum Mutat 20, 233.

    Kremer, B., Goldberg, P., Andrew, S. E., Theilmann, J., Telenius, H., Zeisler, J., Squitieri, F., Lin, B., Bassett, A., Almqvist, E., and et al. (1994). A worldwide study of the Huntington's disease mutation. The sensitivity and specificity of measuring CAG repeats. N Engl J Med 330, 1401-1406.

    Landwehrmeyer, G. B., McNeil, S. M., Dure, L. S. t., Ge, P., Aizawa, H., Huang, Q., Ambrose, C. M., Duyao, M. P., Bird, E. D., Bonilla, E., and et al. (1995). Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol 37, 218-230.

    Leavitt, B. R., Guttman, J. A., Hodgson, J. G., Kimel, G. H., Singaraja, R., Vogl, A. W., and Hayden, M. R. (2001). Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am J Hum Genet 68, 313-324.

    Leung, C. M., Chan, Y. W., Chang, C. M., Yu, Y. L., and Chen, C. N. (1992). Huntington's disease in Chinese: a hypothesis of its origin. J Neurol Neurosurg Psychiatry 55, 681-684.

    Li, X. J., Li, S. H., Sharp, A. H., Nucifora, F. C., Jr., Schilling, G., Lanahan, A., Worley, P., Snyder, S. H., and Ross, C. A. (1995). A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398-402.

    Masuda, N., Goto, J., Murayama, N., Watanabe, M., Kondo, I., and Kanazawa, I. (1995). Analysis of triplet repeats in the huntingtin gene in Japanese families affected with Huntington's disease. J Med Genet 32, 701-705.

    Pramanik, S., Basu, P., Gangopadhaya, P. K., Sinha, K. K., Jha, D. K., Sinha, S., Das, S. K., Maity, B. K., Mukherjee, S. C., Roychoudhuri, S., et al. (2000). Analysis of CAG and CCG repeats in Huntingtin gene among HD patients and normal populations of India. Eur J Hum Genet 8, 678-682.

    Qin, Z. H., Wang, Y., Sapp, E., Cuiffo, B., Wanker, E., Hayden, M. R., Kegel, K. B., Aronin, N., and DiFiglia, M. (2004). Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24, 269-281.

    Racette, B. A., and Perlmutter, J. S. (1998). Levodopa responsive parkinsonism in an adult with Huntington's disease. J Neurol Neurosurg Psychiatry 65, 577-579.

    Reuter, I., Hu, M. T., Andrews, T. C., Brooks, D. J., Clough, C., and Chaudhuri, K. R. (2000). Late onset levodopa responsive Huntington's disease with minimal chorea masquerading as Parkinson plus syndrome. J Neurol Neurosurg Psychiatry 68, 238-241.

    Rigamonti, D., Bauer, J. H., De-Fraja, C., Conti, L., Sipione, S., Sciorati, C., Clementi, E., Hackam, A., Hayden, M. R., Li, Y., et al. (2000). Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 20, 3705-3713.

    Rubinsztein, D. C., Amos, W., Leggo, J., Goodburn, S., Ramesar, R. S., Old, J., Bontrop, R., McMahon, R., Barton, D. E., and Ferguson-Smith, M. A. (1994). Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nat Genet 7, 525-530.

    Saleem, Q., Roy, S., Murgood, U., Saxena, R., Verma, I. C., Anand, A., Muthane, U., Jain, S., and Brahmachari, S. K. (2003). Molecular analysis of Huntington's disease and linked polymorphisms in the Indian population. Acta Neurol Scand 108, 281-286.

    Soong, B. W., and Wang, J. T. (1995). A comparison of the Huntington's disease associated trinucleotide repeat between Chinese and white populations. J Med Genet 32, 404-405.

    Squitieri, F., Andrew, S. E., Goldberg, Y. P., Kremer, B., Spence, N., Zeisler, J., Nichol, K., Theilmann, J., Greenberg, J., Goto, J., and et al. (1994). DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum Mol Genet 3, 2103-2114.

    Sun, Y., Savanenin, A., Reddy, P. H., and Liu, Y. F. (2001). Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem 276, 24713-24718.

    van Dellen, A., and Hannan, A. J. (2004). Genetic and environmental factors in the pathogenesis of Huntington's disease. Neurogenetics 5, 9-17.

    Velier, J., Kim, M., Schwarz, C., Kim, T. W., Sapp, E., Chase, K., Aronin, N., and DiFiglia, M. (1998). Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 152, 34-40.

    Vuillaume, I., Vermersch, P., Destee, A., Petit, H., and Sablonniere, B. (1998). Genetic polymorphisms adjacent to the CAG repeat influence clinical features at onset in Huntington's disease. J Neurol Neurosurg Psychiatry 64, 758-762.

    Yeh, F, C., and Boyle, T. (1997). Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian Botang 129-157.

    Zoghbi, H. Y., and Orr, H. T. (2000). Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23, 217-247.

    Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., Conti, L., MacDonald, M. E., Friedlander, R. M., Silani, V., Hayden, M. R., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293, 493-498.

    QR CODE