研究生: |
高碩 Kao, Shuo |
---|---|
論文名稱: |
區塊匹配應用於雲層移動估計之全天空影像與衛星雲圖日射量估計與預測系統 Cloud motion estimation based on block matching for solar irradiance estimation and prediction with all-sky images and satellite cloud images |
指導教授: |
呂藝光
Leu, Yih-Guang |
口試委員: |
呂藝光
Leu, Yih-Guang 吳政郎 Wu, Jenq-Lang 陶金旺 Tao, Chin-Wang 鄭錦聰 Jeng, Jin-Tsong 陳松雄 Chen, Song-Shyong |
口試日期: | 2024/07/30 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 衛星雲圖 、全天空影像 、粒子測速區塊匹配 、雙向長短期記憶 |
英文關鍵詞: | satellite cloud images, all-sky images, particle image velocimetry block matching, bidirectional long short-term memory |
DOI URL: | http://doi.org/10.6345/NTNU202401627 |
論文種類: | 學術論文 |
相關次數: | 點閱:57 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文透過全天空影像及衛星雲圖的分析,來開發以影像中雲層為特徵的估計與預測系統。在全天空影像中,使用紅藍比例法擷取雲層特徵影像,並提出適應式閾值在不同背景亮度的情況下更精確地判定雲層資訊計算雲層在整張圖的占比,以及太陽周圍雲特徵分析,在衛星雲圖中使用超像素分割出觀測區域雲層並利用紅藍比例法擷取雲層資訊;透過粒子測速區塊匹配推估雲層移動情形,製作未來數分鐘至小時之雲層情況,提取雲層特徵,作為雙向長短期記憶模型之輸入,而模型輸出為日射量。使用三個評估指標來檢視模型學習情形,包含相對均方根誤差、相對平均絕對誤差與預測技巧比較估計及預測成果,其中估計與預測時長 120 分鐘實驗的相對平均絕對誤差分別可達 21.99%與 34.66%。
This thesis develops irradiance estimation and prediction system using all-sky and satellite cloud images. In all sky images, the red-blue ratio method and adaptive thresholds are used to extract cloud features and analyze cloud coverage. Superpixel segmentation is applied to extract cloud features in satellite cloud images. Particle image velocimetry block matching is used to compute cloud motion. Cloud features are fed into a bidirectional long short-term memory model to forecast solar irradiance. Performance is evaluated using relative root mean square error, relative mean absolute error, and forecast skill metrics. The relative mean absolute erros of the forcasting with lead time of 2 hours and estimation are 34.66% and 21.99%, respectively.
[1] T. Hsiao, K. Huang, and Y. Chang, “A model for forecasting of solar power annual electricity and its strategy application,” Journal of Taiwan Energy., vol. 4, no. 4, pp. 401-430, 2017.
[2] M. Q. Raza, M. Nadarajah, and C. Ekanayake, “On recent advances in PV output power forecast,” Solar Energy, vol. 136, pp.125-144, Oct. 2016.
[3] J. Almorox, C. Voyant, N. Bailek, A. Kuriqi, and J. A. Arnaldo, “Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review,” Energy, vol. 236, 2021.
[4] M. Z. Hassan, M. E. K. Ali, A. S. Ali, and J. Kumar, “Forecasting day-ahead solar radiation using machine learning approach,” in Asia-Pacific World Congress on Computer Science and Engineering. Mana Island, Fiji, Dec. 2017, pp. 252-258.
[5] X. Shao, S. Lu, and H. F. Hamann, “Solar radiation forecast with machine learning,” in International Workshop on Active-Matrix Flatpanel Displays and Devices. Kyoto, Japan, Aug. 2016, pp. 19-22.
[6] R. J. Adrian, “Particle-Imaging techniques for experimental fluid mechanics,” Annual Review of Fluid Mechanics, vol. 23, no. 1, pp.261-304, Jan. 1991.
[7] C. W. Chow, B. Urquhart, M. Lave, A. Dominguez, J. Kleissl, J. Shields and B. Washom, “Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed,” Solar Energy, vol. 85, no. 11, pp. 2881-2893, Nov. 2011.
[8] M. S. Rifdi, J. Zheng, E. Sng, K. M. Rajendhiran, Z. Ye and L. H. I. Lim, “An enhanced cloud segmentation algorithm for accurate irradiance forecasting,” Solar Energy, vol. 221, pp. 218-231, Jun. 2021.
[9] J. Zhang, P. Liu, F. Zhang and Q. Song, “CloudNet: ground-based cloud classification with deep convolutional neural network,” Geophysical Research Letters, vol. 45, no. 16, pp. 8665-8672, Aug. 2018.
[10] E. K. Gyasi and P. Swarnalatha, “Cloud-MobiNet: An abridged mobile-net convolutional neural network model for ground-based cloud classification,” Atmosphere, vol. 14, no. 19, Jan. 2023.
[11] M. Hasenbalg, P. Kuhn, S. Wilbert, B. Nouri and A. Kazatzidis, “Benchmarking of six cloud segmentation algorithms for ground-based all- sky imagers,” Solar Energy, vol. 201, pp. 506-614, May. 2020.
[12] X. Li, B. Qiu, G. Cao, C. Wu and L. Zhang, “A novel method for ground-based cloud image classification using transformer,” Remote Sensing, vol 14, no. 16, Aug. 2022.
[13] Y. Fabel, B. Nouri, S. Wilbert, N. Blum, R. Triebel, M. Hasenbalg, P. Kuhn, L. Zarzalejo and R. P. Paal, “Applying self-supervised learning for semantic cloud segmentation of all-sky images,” Atmospheric Measurement Techniques, vol. 15, no. 3, pp.797-809, Feb. 2022.
[14] A. Ryu, M. Ito, H. Ishii and Y. Hayashi, “Preliminary analysis of short-term solar irradiance forecasting by using total-sky imager and convolutional neural network,” in IEEE PES GTD Grand International Conference and Exposition Asia., Bangkok, Thailand, May. 2019, pp. 627-631.
[15] D. Cano, J. Monget, M. Albuisson, H. Guillard, N. Regas and L, Wald, “A method for the determination of the global solar radiation from meteorological satellite data,” Solar Energy, vol. 37, no. 3, pp.31-39, Jan. 1986.
[16] D. Aicardi, P. Musé and R. Alonso-Suárez, “A comparison of satellite cloud motion vectors techniques to forecast intra-day hourly solar global horizontal irradiation,” Solar Energy, vol. 233, pp 46-60, Feb. 2022.
[17] P. Garniwa, R. A. Rajagukguk, R. Kamil and H. J. Lee, “Intraday forecast of global horizontal irradiance using optical flow method and long short-term memory model,” Solar Energy, vol. 252, pp.234-251, Mar. 2023.
[18] J. Polo, L. F. Zarzalejo, L. Ramirez, and B. Espinar, “Iterative filtering of ground data for qualifying statistical models for solar irradiance estimation from satellite data,” Solar Energy, vol. 80, no. 3, pp. 240-247, Mar. 2006.
[19] P. Liu, X. Tong, J. Zhang, P. Meng, J. Li, and J. Zhang, “Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China,” Renewable Energy, vol. 149, pp. 1360-1369, Oct. 2020.
[20] T. Watanabe, D. Nohara, “Prediction of time series for several hours of surface solar irradiance using one-granule cloud property data from satellite observations,” Solar Energy, vol. 186, pp. 113-125, Mar. 2019
[21] A. Alzahrani, J. W. Kimball, and C. Dagli, “Predicting solar irradiance using time series neural networks,” Procedia Computer Science, vol. 36, pp. 623-628, Nov. 2014.
[22] N. Obiora and A. Ali, “Effective implementation of convolutional long short-term memory (ConvLSTM) network in forecasting solar irradiance,” Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, Nov. 2021, pp.1-5.
[23] A. Al-lahham, O. Theeb, K. Elalem, T. A. Alshawi, and S. A. Alshebeili, “Sky Imager-Based Forecast of Solar Irradiance Using Machine Learning,” Electronics, vol. 9, no. 10, Oct. 2020.
[24] S. Tiwari, R. Sabzehgar and M. Rasouli, “Short Term Solar Irradiance Forecast Using Numerical Weather Prediction (NWP) with Gradient Boost Regression,” IEEE International Symposium on Power Electronics for Distributed Generation Systems, Charlotte, NC, USA, Aug. 2018, pp.1-8.
[25] X. Qing and Y. Niu, “Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM,” Energy, vol. 148, pp.461-468, Jan. 2018.
[26] J. Alonso-Montesinos and F. J. Batlles, “The use of a sky camera for solar radiation estimation based on digital image processing,” Energy, vol. 90, pp.377-386, Oct. 2015.
[27] X. Hou, C, Ju and B. Wang, “Prediction of solar irradiance using convolutional neural network and attention mechanism-based long short-term memory network based on similar day analysis and an attention mechanism,” Heliyon, vol. 9, no. 11, Aug. 2023
[28] H. G. Beyer, R. Blaga, J. Boland, J. M. Bright, C. F.M. Coimbra, M. David, Â. Frimane, C. A. Gueymard, T. Hong, M. J. Kay, S. Killinger, J. Kleissl, P. Lauret, E. Lorenz, D. Meer, M. Paulescu, R. Perez, O. Perpiñán-Lamigueiro, I. Peters, G. Reikard, D. Renné, Y. Saint-Drenan, Y. Shuai, R. Urraca, H. Verbois, F. Vignola, C. Voyant and J. Zhang, “Verification of deterministic solar forecasts,” Solar Energy, vol 210, pp.20-37, Nov. 2020.
[29] I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Solar Energy, vol. 76, no. 5, pp. 577-589, Jan. 2004.
[30] H. Dilantha, D. Daswin, S. Seppo, A. Damminda, N. Rashmika, J. Andrew and V. Valeriy, “Solar irradiance nowcasting for virtual power plants using multimodal long short-term memory networks,” Frontiers in Energy Research, vol. 9, Aug. 2021.
[31] R. A. Rajagukguk, W.-K. Choi and H. Lee, “Sun-blocking index from sky image to estimate solar irradiance,” Building and Environment, vol. 223, art. 109481, Sep. 2022.
[32] S. Sun, E. Ritzhaupt-Kleissl and T. Chen, “Short term cloud coverage prediction using ground based all sky imager,” in IEEE International Conference on Smart Grid Communications, Venice, Italy, Jan. 2014, pp. 121-126.
[33] S. Dev, F. M. Savoy, Y. H. Lee and S. Winkler, “Estimating solar irradiance using sky imagers,” Atmospheric Measurement Techniques, vol. 12, no. 10, pp.5417-5429, Oct. 2019.
[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997
[35] S. Siami-Namini, N. Tavakoli and A. S. Namin, “The performance of LSTM and BiLSTM in forecasting time series,” in IEEE International Conference on Big Data, Los Angeles, CA, USA, 2019, pp. 3285-3292
[36] H. Moritz, “Geodetic reference system 1980,” Journal of Geodesy, vol. 74, no. 1, pp.128-133, Mar. 2000.
[37] S. M. Robeson, “Spherical methods for spatial interpolation: Review and evaluation,” Cartography and Geographic Information Systems, vol. 24, no. 1, pp.3-20, 1997.
[38] C. L. Zitnick and S. B. Kang, “Stereo for image-based rendering using image over-segmentation,” International Journal of Computer Vision, vol. 75, no. 1, pp. 49-65, Feb. 2007.
[39] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, “Lazy snapping,” Association for Computing Machinery, vol. 23, no. 3, pp.303-308, Aug. 2004.
[40] G. Mori, “Guiding model search using segmentation,” in IEEE International Conference on Computer Vision, Beijin, China, Oct. 2005, pp.1417-1423.
[41] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and object localization with superpixel neighborhoods,” in IEEE international conference on computer vision, Kyoto, Japan, Sep. 2009, pp.670-677.
[42] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 11, pp.2274-2282, May. 2012.
[43] 郭家宏,“基於超像素分割之衛星雲圖進行預測與估計日射量之系統”,國立臺灣師範大學電機工程學系碩士論文,2022年8月。
[44] G. Campbell and J. Norman, An Introduction to Environmental Biophysics, 2nd ed. New York: Springer, 1998.
[45] T. P. Chu, J. H. Gou, Y. G. Leu and L. F. Chou, “Estimation of solar irradiance and solar power based on all-sky images,” Solar Energy, vol. 249, pp.495-506, Jan. 2023.
[46] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in Proceedings of the 7th international joint conference on Artificial intelligence, vol. 2, Vancouver, BC, Canada, Apr. 1981.