簡易檢索 / 詳目顯示

研究生: 劉侑昂
Yu-Ang Liu
論文名稱: 樹狀奈米金與rGO複合材料合成與其電化學感測之研究
Synthesis of Gold Nanodendrites-Reduced Graphene Oxide Composite Materials for Electrochemical Analysis
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 電化學還原氧化石墨烯樹狀金電極血紅蛋白葡萄糖氧化酶生物感測器
英文關鍵詞: electrochemically reduced graphene oxide, gold dendrite, hemoglobin, glucose oxidase, biosensor
論文種類: 學術論文
相關次數: 點閱:164下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用葡萄糖氧化酶(GOx)和血紅蛋白(Hb)兩種酵素分別偵測葡萄糖與過氧化氫,本實驗製作了還原態氧化石墨烯(rGO)與樹狀金電極(GD)的複合材料(GD/rGO)並搭配酵素的薄膜修飾進而製備高靈敏度之生物感測器。應用循環伏安技術和計時電流安培法研究此電極電化學特性。由電化學阻抗(EIS)分析酵素已成功修飾,在X射線光電子能譜(XPS)及拉曼散射光譜的鑑定下證實氧化石墨烯已完成電化學法還原並與樹狀金電極形成複合材料。並利用掃描電子顯微鏡觀察薄膜的表面型態。且根據電化學實驗計算出酵素與修飾薄膜電極表面具快速的電子轉移能力。
    從計時安培法結果顯示此GD/rGO/GOx/Nf(Nafion)薄膜對於葡萄糖偵測展現出<3 s的電流響應時間,並具有0.008 mM到7.2 mM寬廣的偵測線性範圍、5 µM最小偵測極限和良好的靈敏度25.23 µAmM-1cm-2。另一方面,GD/rGO/Hb/Nf薄膜偵測過氧化氫也有<5 s的電流響應時間,寬廣的線性範圍0.003 mM到22.7 mM、與極低的偵測極限1 µM和0.623 mAmM-1cm-2的靈敏度。
    GOx薄膜修飾電極在含有電子傳導媒介偵測葡萄糖時展現出好的電催化活性,而Hb對於偵測過氧化氫也有卓越的電催化還原能力,並且在製備過程中具備簡易、有效率及無環境污染等優點。

    In this thesis, we report the fabrication two highly sensitive hydrogen peroxide and glucose biosensor based on immobilization of glucose oxidase (GOx) and hemoglobin (Hb) on the composites of graphene oxide (rGO) gold dendrites (GD), which are electrodeposited on the GC electrode (GCE). The electrochemical characteristics of the biosensor were studied by cyclic voltammetry (CV) and amperometry. The modified process was characterized by electrochemical impedance spectroscopy (EIS) and cyclic votammetry. The morphologies of modified film were investigated with scanning electron microscopy (SEM) and the element of film was investigated with X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. GOx and Hb were well immobilized onto the GD/rGO film on the rGO and GD composites. The experimental data demonstrate faster electron transfer between enzymes and the modified electrode surface.
    The results of amperometry response indicates that GD/rGO/GOx/Nf(Nafion) film displayed a fast response of less than 3 s and exhibits low detection limit of 5 µM with wide linear range of 0.008-7.2 mM and good sensitivity of 25.23 µAmM-1cm-2 for glucose detection. On the other hand, the GD/rGO/Hb/Nf film also displays a response of less than 5 s. The proposed hydrogen peroxide biosensor shows a low detection limit of 1 µM with linear range of 0.003-22.7 mM and exhibits excellent sensitivity of 0.623 mAmM-1cm-2.
    The modified films show high electrocatalytic activity towards glucose in the presence of mediator and exhibit a remarkable electrocatalytic activity for the reduction of hydrogen peroxide. Moreover the fabrication of these two biosensors was simple, efficient and green technique.

    摘要 I Abstract III 謝誌 V 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1感測器介紹 1 1.2化學感測器 3 1.3生物感測器 6 1.4電化學生物感測器技術 7 1.5電化學分析法 9 1.6化學修飾電極 10 1.7石墨烯 11 1.8氧化石墨烯與還原態氧化石墨烯 13 1.9脈衝式電流電化學沉積法 16 1.10三維樹狀金電極 17 第二章 儀器與實驗藥品 19 2.1儀器介紹 19 2.1.1 X-ray光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 19 2.1.2循環伏安法(Cyclic Voltammetry, CV) 23 2.1.3電化學交流阻抗(electrochemical impedance spectroscopy, EIS) 25 2.1.4安培法(Amperometric, i-t curve) 27 2.1.5拉曼光譜(Raman spectrum) 28 2.1.6掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM) 32 2.1.7能量散射光譜儀(Energy Dispersive System, EDS) 34 2.2實驗藥品 36 2.3實驗步驟 37 第三章 葡萄糖生物感測器 39 3.1 前言 39 3.2葡萄糖氧化酶簡介 40 3.3葡萄糖生物感測機制 41 3.4結果與討論 43 3.4.1氧化石墨烯之電化學還原(rGO) 43 3.4.2還原態氧化石墨烯-樹狀金複合材料(GD/rGO)結構鑑定 44 3.4.3 GD/rGO/GOx修飾電極的電化學阻抗分析 49 3.4.4 GD/rGO/GOx/Nf薄膜修飾電極對pH值及掃描速率之研究 51 3.4.5薄膜修飾電極利用氧氣消耗以電化學循環伏安法偵測葡萄糖 55 3.4.6薄膜修飾電極利用電子傳導媒介(Mediator)以電化學循環伏安法偵測葡萄糖 56 3.4.7薄膜修飾電極以計時安培法偵測葡萄糖 59 第四章 血紅蛋白酵素電極偵測過氧化氫 64 4.1前言 64 4.2血紅蛋白介紹 65 4.3酵素催化還原過氧化氫 66 4.4結果與討論 67 4.4.1 GD/rGO/Hb/Nf薄膜修飾電極表面型態與元素分析 67 4.4.2 GCE/GD/rGO/Hb修飾電極的電化學阻抗分析 69 4.4.3 GD/rGO/Hb/Nf薄膜修飾電極對pH值及掃描速率之研究 70 4.4.4薄膜修飾電極以電化學循環伏安法偵測過氧化氫 73 4.4.5薄膜修飾電極以計時安培法偵測葡萄糖 75 第五章 結論 79 第六章 參考文獻 80

    1. 黃炳照, 固態電解質電化學氣體感測器. CHEMISTRY (THE CHINESE CHEM. SOC, TAIPEI) 2001, 59, 207-217.
    2. Fan, X.; White, I. M.; Shopova, S. I.; Zhu, H.; Suter, J. D.; Sun, Y., Sensitive optical biosensors for unlabeled targets: a review. Analytica chimica acta 2008, 620 (1-2), 8-26.
    3. 王宗興, 分子辨識與感測器. http://www.chemedu.ch.ntu.edu.tw/lecture/molecular/2.htm 2001.
    4. Gilmartin, M. A. T.; Hart, J. P., Sensing With Chemically and Biologically Modified Carbon Electrodes A Review. Analyst 1995, 120, 1029.
    5. 吳姿瑩, 製備碳材複合薄膜修飾電極分別偵測亞硝酸鹽、達有隆、非草隆與色胺酸. 國立台北科技大學化學工程研究所碩士學位論文 2013.
    6. Grieshaber, D.; MacKenzie, R.; Voros, J.; Reimhult, E., Electrochemical Biosensors - Sensor Principles. Sensors 2008, 8, , 1400-1458.
    7. Andrade, C.; Oliveira, M. D.; Faulin, T.; Hering, V.; Abdalla, D. S. P., Biosensors for Health, Environment and Biosecurity.
    8. The´venot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical biosensors: recommended definitions and classification. Biosensors & Bioelectronics 2001, 16, 121–131.
    9. Clark, L. C.; Lyons, C., Electrode systems for continuous monitoring cardiovascular surgery. Ann. N. Y. Acad. Sci 1962, 102, 29-45.
    10. MURRAY, R. W., Chemically Modified Electrodes. Acc. Chem. Res. 1980, 13, 135-141.
    11. DURST, R. A.; BAUMNER, A. J.; MURRAY, R. W.; BUCK, R. P.; ANDRIEUX, C. P., CHEMICALLY MODIFIED ELECTRODES. Pure &App Chem 1997, 69, 1317-1323.
    12. 鍾協訓; 曾志明, 修飾電極液體電化學感測器的介紹與應用. CHEMISTRY (THE CHINESE CHEM. SOC, TAIPEI) 2001, 59, 201-206.
    13. 李偉立, 2010年諾貝爾物理獎—碳奈米結構的美. 科學發展 2011年6月, 462期, 53-59.
    14. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-9.
    15. Liu, H.; Liu, Y.; Zhu, D., Chemical doping of graphene. Journal of Materials Chemistry 2011, 21 (10), 3335.
    16. Xu, K.; Cao, P.; Heath, J. R., Graphene visualizes the first water adlayers on mica at ambient conditions. Science 2010, 329 (5996), 1188-91.
    17. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312 (5777), 1191-6.
    18. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324 (5932), 1312-4.
    19. Sobon, G.; Sotor, J.; Joanna Jagiello; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K. M., Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Optics Express 2012, 20, 19463-19473
    20. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society reviews 2010, 39 (1), 228-40.
    21. Yuxi Xu, H. B.; Gewu Lu, C. L.; Shi, G., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. AM. CHEM. SOC. 2008, 130, 5858.
    22. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
    23. Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. Ilhan A. Aksay 2006, 110, 8535.
    24. Cote, L. J.; Cruz-Silva, R.; Huang, J., Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. J. Am. Chem. Soc. 2009, 13, 11027.
    25. Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S., Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry Communications 2011, 13 (2), 133-137.
    26. Viinikanoja, A.; Wang, Z.; Kauppila, J.; Kvarnstrom, C., Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization. Physical chemistry chemical physics : PCCP 2012, 14 (40), 14003-9.
    27. Pei, S.; Cheng, H.-M., The reduction of graphene oxide. Carbon 2012, 50 (9), 3210-3228.
    28. Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y., Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22 (10), 1027-1036.
    29. Zhu, Z.; Garcia-Gancedo, L.; Flewitt, A. J.; Xie, H.; Moussy, F.; Milne, W. I., A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 2012, 12 (5), 5996-6022.
    30. Yang, J.; Gunasekaran, S., Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 2013, 51, 36-44.
    31. Wang, X.; Zhi, L.; Mullen, K., Transparent,Conductive Graphene Elecreodes for Dye Sensitized Solar Cells. NanoLett. 2008, 8, 323.
    32. Eda, G.; Lin, Y.-Y.; Miller, S.; Chen, C.-W.; Su, W.-F.; Chhowalla, M., Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters 2008, 92 (23), 233305.
    33. Schwierz, F., Graphene transistors. Nature nanotechnology 2010, 5 (7), 487-96.
    34. HONTORIA-LUCAS, C.; LOPEZ-~EINADO, A. J.; LOPEZ-GONZALEZ, J. D. D.; ROJAS-CERVANTES, M. L.; MART-RANDA, R. M., Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33, 1585-1592.
    35. Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B., Structural evolution during the reduction of chemically derived graphene oxide. Nature chemistry 2010, 2 (7), 581-587.
    36. He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chemical Physics Letters 1998, 287, 53-56.
    37. Oznuluer, T.; Pince, E.; Polat, E. O.; Balci, O.; Salihoglu, O.; Kocabas, C., Synthesis of graphene on gold. Applied Physics Letters 2011, 98 (18), 183101.
    38. Liao, C.; Zhang, M.; Niu, L.; Zheng, Z.; Yan, F., Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. Journal of Materials Chemistry B 2013, 1 (31), 3820.
    39. Nomura, K.; Shibata, N.; Maeda, M.; , Preparation of Zinc Oxide Thin Films by Pulsed Current Electrolysis J. Electrochem. Soc 2002 149, F76-F80.
    40. 林苔瑄, 以電化學法製備金奈米結構及其應用之研究. 國立台灣師範大學化學系博士論文 2009.
    41. Watts, J. F.; Wolstenholme, J., An Introduction to Surface Analysis by XPS and AES John Wiley & Sons. 2003.
    42. Vickerman, J. C.; Gilmore, I. S., Surface Analysis –The Principal Techniques. Edition, n., Ed. John Wiley & Sons. 2009.
    43. Horton, J. H., http://www.chem.queensu.ca/people/faculty/horton/images/figure2.png.
    44. Bard, A. J.; Faulkner, L. R., Electrochemical Methods fundamentals and application, John Wiley & Sons, Inc. New York 2001, 227
    45. Harvey, D., Voltammetric Methods. http://chemwiki.ucdavis.edu/Analytical_Chemistry/Analytical_Chemistry_2.0/11_Electrochemical_Methods/11D_Voltammetric_Methods.
    46. Barsoukov, E. b. E.; Macdonald, J. R., Impedance Spectroscopy Theory, Experiment, and Applications. A John Wiley & Sons, Inc., Publication 2005 Second Edition.
    47. 汪建民, 材料分析. 中國材料科學學會 1998.
    48. Interfaces and Sensors http://www.ifremer.fr/ic/en/raman.htm 2007.
    49. Ramesha, G. K.; Sampath, S., Electrochemical Reduction of Oriented Graphene Oxide Films: An in Situ Raman Spectroelectrochemical Study. J. Phys. Chem. C 2009, 113, 7985–7989.
    50. Sahoo, S.; Khurana, G.; Barik, S. K.; Dussan, S.; Barrionuevo, D.; Katiyar, R. S., In Situ Raman Studies of Electrically Reduced Graphene Oxide and Its Field-Emission Properties. The Journal of Physical Chemistry C 2013, 117 (10), 5485-5491.
    51. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H., Reduced graphene oxide by chemical graphitization. Nature communications 2010, 1, 73.
    52. Nikiel, L.; Jagodzinski, P. W., Raman spectroscopic characterization of graphites: A re-evaluation of spectra/ structure correlation. Carbon 1993, 31, 1313–1317.
    53. Ferrari, A. C.; Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095-14107.
    54. Egerton, R. F., Physical Principles of Electron Microscopy. Springer Science Business Media, Inc 2005.
    55. University, P., Scanning Electron Microscope. http://www.purdue.edu/rem/rs/sem.htm#4 2014.
    56. Halbleiterlabor, M., Silicon Drift Detectors in Industry Applications. http://www.hll.mpg.de/06_projects/proj_indust-app.html.
    57. Wikipedia, Energy-dispersive X-ray spectroscopy. http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy.
    58. Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L., Glucose oxidase-an overview. Biotechnology advances 2009, 27 (4), 489-501.
    59. Wang, J., Glucose Biosensors 40 Years of Advances and Challenges. Electroanalysis 2001, 13, 983.
    60. Wilson, R.; Turner, A. P. F., Review article glucose oxidase. Biosens Bioelectron 1992, 7, 165-185.
    61. Raba, J.; Mottola, H. A., Glucose Oxidase as an Analytical Reagent. Critical Reviews in Analytical Chemistry 1995, 25(1), 1-42.
    62. Wang, J., Electrochemical Glucose Biosensors. CHem. Rev. 2008, 108, 814-825.
    63. Chaubey, A.; Malhotra, B. D., Mediated biosensors. Biosensors and Bioelectronics 2002, 17 (6–7), 441-456.
    64. Cass, A. E. G.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D. L.; Turner, A. P. F., Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry 1984, 56 (4), 667-671.
    65. Ghica, M. E.; Brett, C. M. A., Development of a Carbon Film Electrode Ferrocene‐Mediated Glucose Biosensor. Analytical Letters 2005, 38 (6), 907-920.
    66. Bonanni, A.; Pumera, M., Electroactivity of graphene oxide on different substrates. RSC Advances 2012, 2 (28), 10575.
    67. Devadas, B.; Rajkumar, M.; Chen, S.-M.; Saraswathi, R., Electrochemically Reduced Graphene Oxide/ Neodymium Hexacyanoferrate Modified Electrodes for the Electrochemical Detection of Paracetomol. Int. J. Electrochem. Sci. 2012, 7 3339 - 3349.
    68. Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H., A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3 , 2653–2659.
    69. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S., Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
    70. Sheng, Q.; Luo, K.; Li, L.; Zheng, J., Direct electrochemistry of glucose oxidase immobilized on NdPO4 nanoparticles/chitosan composite film on glassy carbon electrodes and its biosensing application. Bioelectrochemistry 2009, 74 (2), 246-53.
    71. Laviron, E., The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979, 100 (1–2), 263-270.
    72. LAVIRON, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19--28.
    73. Rahimi, P.; Rafiee-Pour, H. A.; Ghourchian, H.; Norouzi, P.; Ganjali, M. R., Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry. Biosens Bioelectron 2010, 25 (6), 1301-6.
    74. Mani, V.; Devadas, B.; Chen, S. M., Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 2013, 41, 309-15.
    75. Alwarappan, S.; Liu, C.; Kumar, A.; Li, C.-Z., Enzyme-Doped Graphene Nanosheets for Enhanced Glucose Biosensing. The Journal of Physical Chemistry C 2010, 114 (30), 12920-12924.
    76. Zhou, M.; Shang, L.; Li, B.; Huang, L.; Dong, S., Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Biosens Bioelectron 2008, 24 (3), 442-7.
    77. Yang, S.; Lu, Z.; Luo, S.; Liu, C.; Tang, Y., Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Microchimica Acta 2012, 180 (1-2), 127-135.
    78. Asav, E.; Akyilmaz, E., Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection. Biosens Bioelectron 2010, 25 (5), 1014-8.
    79. Zhang, S.; Wang, N.; Yu, H.; Niu, Y.; Sun, C., Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 2005, 67 (1), 15-22.
    80. Zhang, S.; Wang, N.; Niu, Y.; Sun, C., Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sensors and Actuators B: Chemical 2005, 109 (2), 367-374.
    81. Zhou, K.; Zhu, Y.; Yang, X.; Li, C., Electrocatalytic Oxidation of Glucose by the Glucose Oxidase Immobilized in Graphene-Au-Nafion Biocomposite. Electroanalysis 2010, 22 (3), 259-264.
    82. Cao, S.; Yuan, R.; Chai, Y.; Zhang, L.; Li, X.; Gao, F., A mediator-free amperometric hydrogen peroxide biosensor based on HRP immobilized on a nano-Au/poly 2,6-pyridinediamine-coated electrode. Bioprocess and biosystems engineering 2007, 30 (2), 71-8.
    83. Kumar, S. A.; Chen, S.-M., Electrocatalytic reduction of oxygen and hydrogen peroxide at poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrodes. Journal of Molecular Catalysis A: Chemical 2007, 278 (1-2), 244-250.
    84. Lu, X.; Zhou, J.; Lu, W.; Liu, Q.; Li, J., Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosens Bioelectron 2008, 23 (8), 1236-43.
    85. Shu, X.; Chen, Y.; Yuan, H.; Gao, S.; Xiao, D., H2O2 Sensor Based on the Room-Temperature Phosphorescence of Nano TiO2/SiO2 Composite. Analytical Chemistry 2007, 79 (10), 3695-3702.
    86. Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., A Selective, Cell-Permeable Optical Probe for Hydrogen Peroxide in Living Cells. Journal of the American Chemical Society 2004, 126 (47), 15392-15393.
    87. Li, J.; Dasgupta, P. K.; Tarver, G. A., Pulsed Excitation Source Multiplexed Fluorometry for the Simultaneous Measurement of Multiple Analytes. Continuous Measurement of Atmospheric Hydrogen Peroxide and Methyl Hydroperoxide. Analytical Chemistry 2003, 75 (5), 1203-1210.
    88. Ayato, Y.; Matsuda, N., Evaluation of Biofuel Cells with Hemoglobin as Cathodic Electrocatalysts for Hydrogen Peroxide Reduction on Bare Indium-Tin-Oxide Electrodes. Energies 2013, 7 (1), 1-12.
    89. Tanner, P. A.; Wong, A. Y. S., Spectrophotometric determination of hydrogen peroxide in rainwater. Analytica chimica acta 1998, 370 (2–3), 279-287.
    90. Chen, C. C.; Do, J. S.; Gu, Y., Immobilization of HRP in Mesoporous Silica and Its Application for the Construction of Polyaniline Modified Hydrogen Peroxide Biosensor. Sensors 2009, 9 (6), 4635-48.
    91. Scheller, F. W.; Bistolas, N.; Liu, S.; Janchen, M.; Katterle, M.; Wollenberger, U., Thirty years of haemoglobin electrochemistry. Advances in colloid and interface science 2005, 116 (1-3), 111-20.
    92. Chen, S.; Yuan, R.; Chai, Y.; Zhang, L.; Wang, N.; Li, X., Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens Bioelectron 2007, 22 (7), 1268-74.
    93. Norouzi, P.; Larijani, B.; Faridbod, F.; Ganjali, M. R., Hydrogen Peroxide Biosensor Based on Hemoglobin Immobilization on Gold Nanoparticle in FFT Continuous Cyclic Voltammetry Flow Injection System. Int. J. Electrochem. Sci. 2010, 5, 1550 - 1562.
    94. Zhang, J.; Oyama, M., A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochimica Acta 2004, 50 (1), 85-90.
    95. Gu, H.-Y.; Yu, A.-M.; Chen, H.-Y., Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. Journal of Electroanalytical Chemistry 2001, 516, 119–126.
    96. Xie, L.; Xu, Y.; Cao, X., Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids and surfaces. B, Biointerfaces 2013, 107, 245-50.
    97. Salimi, A.; Hallaj, R.; Soltanian, S., Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Biophysical chemistry 2007, 130 (3), 122-31.
    98. Shie, J. W.; Yogeswaran, U.; Chen, S. M., Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors. Talanta 2009, 78 (3), 896-902.
    99. Wang, Y.; Chen, X.; Zhu, J.-J., Fabrication of a novel hydrogen peroxide biosensor based on the AuNPs–C@SiO2 composite. Electrochemistry Communications 2009, 11 (2), 323-326.
    100. Zhou, K.; Zhu, Y.; Yang, X.; Luo, J.; Li, C.; Luan, S., A novel hydrogen peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites. Electrochimica Acta 2010, 55 (9), 3055-3060.
    101. Xian, Y.; Xian, Y.; Zhou, L.; Wu, F.; Ling, Y.; Jin, L., Encapsulation hemoglobin in ordered mesoporous silicas: Influence factors for immobilization and bioelectrochemistry. Electrochemistry Communications 2007, 9 (1), 142-148.
    102. Xu, J.; Liu, C.; Wu, Z., Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film. Microchimica Acta 2010, 172 (3-4), 425-430.
    103. Tang, M.; Chen, S.; Yuan, R.; Chai, Y.; Gao, F.; Xie, Y., Amperometric Biosensor for Hydrogen Peroxide Based on Direct Electrocatalysis by Hemoglobin Immobilized on Gold Nanoparticles/1,6-Diaminohexane Modified Glassy Carbon Electrode. Analytical Sciences 2008, 24 (4), 487-491.
    104. Yang, G.; Yuan, R.; Chai, Y. Q., A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids and surfaces. B, Biointerfaces 2008, 61 (1), 93-100

    下載圖示
    QR CODE