簡易檢索 / 詳目顯示

研究生: 王令儀
Li-I Wang
論文名稱: 不同型態蹲踞垂直跳下肢生物力學研究
The Biomechanical Study of Lower Extremities During Different Squat Jumps
指導教授: 林德嘉
Lin, Der-Chia
黃長福
Huang, Chen-Fu
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 92
中文關鍵詞: 蹲踞跳動力學逆過程肌電圖
英文關鍵詞: squat jump, inverse dynamic, EMG
論文種類: 學術論文
相關次數: 點閱:349下載:87
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的有二個部分:(一)透過約束踝關節參與跳躍活動程度的設計,了解踝關節不充分蹬伸對跳躍表現的影響,以及踝關節活動的改變對膝、髖關節活動造成的影響。(二)透過不同跳躍表現間下肢生物力學參數的比較,了解造成低跳躍表現的因素。受試對象為10名受過運動專項訓練的體育系男性。以一台Redlake高速攝影機(125Hz;1/625)、一塊Kilster測力板(1250Hz)與Biovision肌電系統(1250Hz)同步,擷取跳躍動作過程中的運動生物力學參數,並透過模式之運算獲得進一步之動力學參數。採用重複量數t-test來檢測:1.『「蹲踞跳」與「束踝蹲踞跳」』間;2.『「高表現蹲踞跳」與「低表現蹲踞跳」』間,是否有差異,統計顯著水準定為α=.05。本研究之主要結果為:一、當踝關節蹬伸活動受到約束後,踝關節蹬伸活動角度由58.01度降至39.10度,踝關節處對蹬伸能量提供的貢獻由76.39焦耳的功降至為59.38焦耳。且膝關節的活動亦受到影響,其蹬伸活動角度由86.44度降至75.85度,且對蹬伸能量提供的貢獻由75.58焦耳的功降至為62.07焦耳。跳躍高度降低5公分。二、低跳躍表現時股骨肌、腓腸肌與比目魚肌肌肉活動時宜出現延遲的現象。而髖節最大角速度時宜的提早與踝關節最大淨肌肉力矩時宜的延遲,影響能量的形成,使得髖關節處對蹬伸能量提供的貢獻由59.39焦耳的功降至為50.57焦耳,踝關節處對蹬伸能量提供的貢獻由76.39焦耳的功降至為67.98焦耳。

    There were two purposes in this study. 1. To investigate the effect both on the squat jump performance and on the activities of lower extremities through the design of constraining ankle movement and incomplete extension in the joint. 2. To investigate the factors of the effect by comparing the biomechanical differences between highest and lowest performance in regular squat jump. Ten healthy males were conducted as subjects for this study. Redlake high-speed camera (125Hz;1/625), and Biovision EMG system (1250Hz) were synchronized with Kistler force plate (1250Hz) to collect the biomechanics parameters during the subjects performing squat jump movement. The net muscle joint moments were calculated by using inverse dynamics process. Differences between mean values of jumping performance were evaluated by means of Student's t-test for repeat subjects. Statistical significance was set atα=.05. The results showed that: 1. The range of motion of the ankle was reduced from 58.01° to 39.10° while the ankle was restricted during squat jump. The ankle contributed to the work reduced from 76.39 J to 59.38 J in the instant of take-off. Besides, the range of motion of the knee was reduced from 86.44° to 75.85°. The knee contributed to the work reduced from 75.58 J to 62.07 J in take off activity. 2.During the lowest performance of squat jump the initiate times of EMG signal on m. vasti, m. gastrocentius, and m. soleus were delayed while compare them to those signals on highest performance of squat jump. Similarly, the peak angular velocity of hip joint was appeared earlier than highest performance, and the peak net muscle joint moment was appeared later than highest performance. These phenomena caused the work of hip joint to reduce from 59.39 J to 50.57 J, and the work of ankle joint to reduce from 76.39 J to 67.98 J in take-off activity.

    目 次 中文摘要---------------------------------------------------------------------------І 英文摘要---------------------------------------------------------------------------ІІ 謝誌--------------------------------------------------------------------------------ІІІ 目次--------------------------------------------------------------------------------ІV 表次--------------------------------------------------------------------------------VІ 圖次-------------------------------------------------------------------------------VІІ 壹、緒論----------------------------------------------------------------------------1 一、問題背景----------------------------------------------------------------------2 二、研究目的----------------------------------------------------------------------7 三、研究範圍----------------------------------------------------------------------8 四、實驗與模式建構之假定----------------------------------------------------9 五、名詞解釋與操作性定義---------------------------------------------------10 貳、文獻探討---------------------------------------------------------------------13 一、跳躍過程中下肢肌群活動機制------------------------------------------13 二、跳躍過程中下肢單、雙關節肌群的協同機制-------------------------15 三、肌肉力量改變對跳躍過程中肌肉機制的影響------------------------19 四、模式研究的應用------------------------------------------------------------20 五、文獻總結---------------------------------------------------------------------22 參、研究方法與步驟------------------------------------------------------------23 一、研究對象---------------------------------------------------------------------23 二、實驗時間與地點------------------------------------------------------------24 三、實驗流程---------------------------------------------------------------------25 四、實驗資料收集與場地佈置------------------------------------------------26 五、資料處理---------------------------------------------------------------------25 六、模式建立與運算式---------------------------------------------------------31 肆、結果---------------------------------------------------------------------------36 一、運動學結果------------------------------------------------------------------36 二、動力學結果------------------------------------------------------------------43 三、肌電結果---------------------------------------------------------------------50 伍、討論與結論------------------------------------------------------------------55 一、踝關節不充分的蹬伸對跳躍表現的影響------------------------------55 二、形成低跳躍表現的因素---------------------------------------------------61 三、結論---------------------------------------------------------------------------66 引用文獻-------------------------------------------------------------------------67 一、中文部分---------------------------------------------------------------------67 二、英文部分---------------------------------------------------------------------68 附錄一、每位受試者之基本資料---------------------------------------------72 附錄二、每位受試者實驗所得各生物力學參數---------------------------73 表 次 表3-1受試者基本資料--------------------------------------------------------23 表3-2表面肌電電極片黏貼位置--------------------------------------------28 表4-1「蹲踞跳」與「束踝蹲踞跳」之跳躍高度--------------------------37 表4-2「高表現蹲踞跳」與「低表現蹲踞跳」之跳躍高度--------------37 表4-3「蹲踞跳」與「束踝蹲踞跳」下肢各關節活動角度--------------40 表4-4「高表現蹲踞跳」與「低表現蹲踞跳」下肢各關節活動角度--40 表4-5「蹲踞跳」與「束踝蹲踞跳」下肢各關節最大角速度-----------41 表4-6「高表現蹲踞跳」與「低表現蹲踞跳」下肢各關節最大角速度-41 表4-7「蹲踞跳」與「束踝蹲踞跳」下肢各關節最大角速度出現的時宜--42 表4-8「高表現蹲踞跳」與「低表現蹲踞跳」下肢各關節最大角速度出現的時宜-42 表4-9「蹲踞跳」與「束踝蹲踞跳」最大垂直地面反作用力-----------44 表4-10「高表現蹲踞跳」與「低表現蹲踞跳」最大垂直地面反作用力-------44 表4-11「蹲踞跳」與「束踝蹲踞跳」下肢各關節肌群最大淨力矩------47 表4-12「高表現蹲踞跳」與「低表現蹲踞跳」下肢各關節肌群最大淨力矩----47 表4-13「蹲踞跳」與「束踝蹲踞跳」下肢各關節最大淨力矩出現的時------48 表4-14「高表現蹲踞跳」與「低表現蹲踞跳」下肢各關節最大淨力矩出現的時宜--48 表4-15「蹲踞跳」與「束踝蹲踞跳」下肢各關節肌群淨總作功--------49 表4-16「高表現蹲踞跳」與「低表現蹲踞跳」下肢各關節肌群淨總作功-49 表4-17「蹲踞跳」與「束踝蹲踞跳」下肢肌群標準化IEMG值-------52 表4-18「高表現蹲踞跳」與「表現蹲踞跳」下肢肌群標準化IEMG值--------53 表4-19「蹲踞跳」與「束踝蹲踞跳」下肢各肌群肌電訊號的起始時間--------54 表4-20「高表現蹲踞跳」與「低表現蹲踞跳」下肢各肌群肌電訊號的起始時間--54 圖 次 圖1-1本研究之兩種跳躍動作圖--------------------------------------------12 圖1-2運動學分析之關節角度與空間方位定義圖-----------------------12 圖2-1垂直跳躍動作過程中肌肉活動概示圖-----------------------------14 圖2-2肢段旋轉的幾何關係--------------------------------------------------18 圖3-1實驗流程圖--------------------------------------------------------------25 圖3-2實驗用托足板校正鞋--------------------------------------------------27 圖3-3實驗場地佈置-----------------------------------------------------------27 圖3-4腿部各肌群解剖位置與表面肌電電極片黏貼位置--------------28 圖3-5模式建構流程圖--------------------------------------------------------31 圖3-6踝關節之自由體圖與其運算式--------------------------------------33 圖3-7膝關節之自由體圖與其運算式--------------------------------------34 圖3-8髖關節之自由體圖與其運算式--------------------------------------35 圖4-1「蹲踞跳」與「束踝蹲踞跳」關節角度與角速度曲線圖------------------38 圖4-2「高表現蹲踞跳」與「低表現蹲踞跳」關節角度與角速度曲線圖--------39 圖4-3「蹲踞跳」與「束踝蹲踞跳」之垂直地面反作用力曲線------------------43 圖4-4「高表現蹲踞跳」與「低表現蹲踞跳」之垂直地面反作用力曲線-------43 圖4-5「蹲踞跳」與「束踝蹲踞跳」各關節淨肌肉力矩與功率曲線圖----------45 圖4-6「高表現蹲踞跳」與「低表現蹲踞跳」各關節淨肌肉力矩與功率曲線圖---46 圖4-7「蹲踞跳」與「束踝蹲踞跳」標準化肌電訊號線性封包曲線圖----------50 圖4-8「高表現蹲踞跳」與「低表現蹲踞跳」標準化肌電訊號線性封包曲線圖--51

    一、中文部分
    王令儀、林德嘉、黃長福、黃國銓。(2002)。不同年齡之男性立定垂直跳躍下肢動作在協調與控制上的差異。體育學報,33,75-86。
    劉宇。(1999)。人體多關節運動肌肉控制功能的生物力學分析。台灣台北:中國文化大學出版部。
    體育院系教材編輯委員會。(1986)。運動生物力學。中國北京:人民體育出版社。
    二、英文部分
    Bobbert, M. F., Gerritsen, K. G. M., Litjens, M. C. A., & van Soest, A. J. (1996). Why is countermovement jump height greater than squat jump height? Medicine and Science in Sports and Exercise, 28(11), 1402-1412.
    Bobbert, M. F., Huijing, P. A., & van Ingen Schenau, G. J. (1986a). A model of the human triceps surae muscle-tendon complex applied to jumping. Journal of Biomechanics, 19(11), 887-898.
    Bobbert, M. F., Huijing, P. A., & van Ingen Schenau, G. J. (1986b). An estimation of power output and work done by the human triceps surae muscle-tendon complex in jumping. Journal of Biomechanics, 19(11), 899-906.
    Bobbert, M. F., & van Ingen Schenau, G. J. (1988). Coordination in vertical jumping. Journal of Biomechanics, 21(3), 249-262.
    Bobbert, M. F., & van Ingen Schenau, G. J. (1990). Mechanical output about the ankle joint in isokinetic plantar flexion and jumping. Medicine and Science in Sports and Exercise, 22(5), 660-668.
    Bobbert, M. F., & van Soest, A. J. (1994). Effects of muscle strengthening on vertical jump height: a simulation study. Medicine and Science in Sports and Exercise, 26(8), 1012-1020.
    Clark, J. E., & Phillips, S. J. (1989). Developmental stability in jumping. Developmental Psychology, 25(6), 929-935.
    de Graaf, J. B., Bobbert, M. F., Tetteroo, W. E., & van Ingen Schenau, G. J. (1987). Mechanical out put about the ankle in countermovement jump and jumps with extended knee. Human Movement Science, 6, 333-347.
    Dempster, W. T. (1955). Space Requirements of the Seated Operator. WADC Technical Report (TR-55-159). OH: Wright-Patterson Air Force Base.
    Elvira, J. L. L., Rodriguez, I. G., Riera, M. M., & Jodar, X. A. (2001). Comparative study of the reliability of three jump tests with two measurement systems. Journal of Human Movement Studies, 41(5), 369-383.
    Gabbard, C. P. (1992). Lifelong motor development (2nd ed.). Dubuque, IA: Brown & Benchmark.
    Gallahue, D. L., & Ozmun, J. C. (1998). Understanding motor development: Infants, children, adolescent, adults (4thed.). New York: McGraw-Hill.
    Gregoire,L., Veeger, H. E., Huijing, P. A., & van Ingen Schenau, G. J. (1984). Role of mono- and biarticular muscles in explosive movements. International Journal of Sports Medicine, 5, 301-305.
    Hudson, J. L. (1986). Coordination of segments in the jump. Medicine and Science in Sports and Exercise, 18(2), 242-251.
    Hubley, C. L., & Wells, R. P. (1983). A work-energy approach to determine individual joint contributions to vertical jump performance. European Journal of Applied Physiology, 50, 247-254.
    Hunter, J. P., & Marshall, B. N. (2002). Effects of power and flexibility training on vertical jump technique. Medicine and Science in Sports and Exercise, 34 (3), 478-486.
    Jacobs, R., Bobbert, M. F., & van Ingen Schenau, G. J. (1993). Function of mono- and biarticular muscles in running. Medicine and Science in Sports and Exercise, 25(10), 1163-1173.
    Jacobs, R., & van Ingen Schenau, G. J. (1992). Intermuscular coordination in a sprint push-off. Journal of Biomechanics, 25(9), 953-965.
    Jacobs, R., Bobbert, M. F., & van Ingen Schenau, G. J. (1996). machanical output from individual muscles during explosive leg extensions: The role of biarticular muscles. Journal of Biomechanics, 29(5), 513-523.
    Nigg, B. M., & Herzog, W. (1999). Biomechanics of the Musculo-skeletal System. Chichester, England: John Willey & Sons Ltd.
    Pandy, M. G., & Zajac, F. E. (1991). Optimal muscular coordination strategies for jumping. Journal of Biomechanics, 24(1), 1-10.
    Pandy, M. G., Zajac, F. E., Sim, E., & Levine, W. S. (1990). An optimal control model for maximum-height human jumping. Journal of Biomechanics, 23(12), 1185-1198.
    Selbie, W. S. & Caldwell, G. E. (1996). A simulation study of vertical jumping from different starting postures. Journal of Biomechanics, 29(9), 1137-1146.
    Thelen, E., & Ulrich, B. D. (1991). Hidden skill: A dynamic systems analysis of treadmill stepping during the first year. Monographs of the Society for Research in Child Development, 56(1), 223.
    van Ingen Schenau, G. J. (1989). From rotation to translation: Constraints of muti-joint movements and the unique action of bi-articular muscles. Human Movement Science, 8(4), 301-337.
    van Ingen Schenau, G. J., Bobbert, M. F., Woittiez, R. D., & Huijing, P. A. (1985). The instantaneous torque-angular velocity relation in plantar flextion during jumping. Medicine and Science in Sports and Exercise, 17(5), 422-426.
    van Soest, A. J., Bobbert, M. F., & van Ingen Schenau, G. J. (1994). A control strategy for the execution of explosive movements from varying starting positions. Journal of Neurophysiology, 71(4), 1390-1402.
    van Soest, A. J., Roebroeck, M. E., Bobbert, M. F., Huijing, P. A., & van Ingen Schenau, G. J. (1985). A comparison of one-legged and two-legged countermovement jumps. Medicine and Science in Sports and Exercise, 17(6), 635-639.
    van Soest, A. J., Schwab, A. L., Bobbert, M. F., & van Ingen Schenau, G. J. (1993). The influence of the biarticularity of the gastrocnemius muscle on vertical-jumping achievement. Journal of Biomechanics, 26(1), 1-8.
    van Zandwijk, J. P., Bobbert, M. F., Munneje, M., & Pas, P. (2000). Control of maximal and submaximal vertical jumps. Medicine and Science in Sports and Exercise, 32(2), 477-485.
    Winter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). New York: John Wiley & Sons.
    Woittiez, R. D., Rozendal, R. H., & Huijing, P. A. (1985). The functional significance of architecture of the human triceps surae muscle. In D. A. Winter, R. W. Norman, R. P. Wells, K. C. Hayes, & A. E. Patla (Eds.), Biomechanics IX, International Series on Biomechanics, 5A (pp. 21-26). Champaign, IL: Human Kinetics.

    QR CODE