研究生: |
楊煜傑 |
---|---|
論文名稱: |
基於人體狀態及交通運輸模式識別技術在智慧型手機上發展減重偵測系統 Developing a Weight Loss Monitoring System on Smartphone Using Human Behavior and Transportation Detection Technology for Healthcare |
指導教授: |
陳志銘
Chen, Chih-Ming 洪欽銘 Hong, Chin-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 智慧型手機 、減重偵測系統 、加速度感測器 、人體活動狀態識別 、交通運輸模式識別 、健康照護 |
英文關鍵詞: | Smartphone, Weight loss monitoring system, Accelerometer, Human activity detection, Transportation detection, Healthcare |
論文種類: | 學術論文 |
相關次數: | 點閱:312 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在內建三軸加速度感測器的智慧型手機平台上成功發展具識別人體活動狀態及交通運輸模式的方法。並且基於人體狀態及交通運輸模式識別結果發展一套個人熱量紀錄器,能夠提供使用者24小時的熱量消耗監測記錄並提供簡單的統計圖表,讓使用者知道每天的活動量及其所消耗熱量,作為使用者實施減重健康照護時的有效輔助工具。
智慧型手機平台採用HTC HERO,三軸加速度感測器資料收集則採用Accelogger,並且利用Weka發展人體狀態及交通運輸模式預測模型,在測試比較決策樹、邏輯迴歸、類神經網路、支持向量機以及貝氏分類器等五種分類演算法後,以決策樹得到最佳的分類準確率。因此本研究採用決策樹當成人體狀態及交通運輸模式分類預測工具,分別可識別出走路、慢跑、搭公車、搭捷運以及靜止狀態,且準確率達到97.1954%。發展完成之系統,在隨機抽樣使用者試用後,顯示本研究發展之系統對於應用於個人減重健康照護具有實際應用價值。
The study presents a novel scheme, which can accurately identify human activities such as running, walking, stillness and transportation statuses such as taking bus and MRT, based on samrtphone with build-in tri-axial accelerometer. Moreover, a weight loss monitoring system with precisely calculating consuming calories was successfully developed for healthcare in daily life based on the above-mentioned technologies of identifying human activities and transportation statuses. In the study, the HTC HERO smartphone with build-in tri-axial accelerometer and Android operating system was adopted as platform to develop the proposed weight loss monitoring system. Additionally, an application program named Accelogger with Fast Fourier Transformation (FFT) was employed to sense data of human activities and transportation statuses from tri-axial accelerometer for collecting training data and performing feature selection to model a prediction model. Meanwhile, the study applied Weka, which is a data mining tool, to implement the proposed prediction model of identifying human activities and transportation statuses. After comparing five well-known pattern classification schemes in Weka, decision tree has the best performance in terms of classification accuracy rate, and the classification accuracy rate on predicting three human activities and two transportation statuses is up to 97.1954%. Therefore, the study selects decision tree as prediction model for the proposed weight loss monitoring system. Finally, the proposed weight loss monitoring system was tested by six users who have different life styles during two weeks and an interview was performed to evaluate the satisfactory degree after they used the proposed system for weight loss monitoring. The experimental results show that the proposed weight loss monitoring system is indeed helpful to users to set a weight loss plan based on their self-regulated abilities.
一、中文部分
吳鳳媖(2010年6月24日)。台灣肥胖盛行率明顯上升 近四年肥胖相關疾病健保支出高達2,400億。WoWoNews。2010年6月28日,取自:http://www.wowonews.com/2010/06/2400.html
科技產業資訊室 (2009年7月15日)。2010年全球三分之一手機內建加速度感測器。2009年12月28日,取自:http://iknow.stpi.org.tw/Post/Read.aspx?PostID=1527
新華網(2010年5月19日)。報告:兒童肥胖或威脅美國“國家安全”。2010年6月1日,取自:http://big5.ifeng.com/gate/big5/health.ifeng.com/longevity/explore/detail_2010_05/19/1532823_0.shtml
二、英文部分
Android Developers. (n. d.). Retrieved November 5, 2009, from http://developer.android.com/index.html
Apple. (n. d.). Retrieved November 27, 2009, from http://www.apple.com/tw/
Brezmes, T., Gorricho, J. L. and Josep, C. (2009). Activity Recognition from Accelerometer Data on a Mobile Phone. EWANN 2009, Part II, LNCS 5518: 796-799.
Chang, Y. C., Jih, W.R. and Hsu, Y. J. (2009). Transportation Detection Using Accelerometer on Mobile Phone. Proceedings of the 14th Conference on Artificial Intelligence and Applications Tai-chung, Taiwan.
Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J., Klasnja, P., Koscher, K., LaMarca, A., Landay, J., LeGrand, L., Lester, J., Rahimi, A., Rea, A. and Wyatt, D. (2008). The Mobile Sensing Platform: An Embedded System for Activity Recognition. IEEE Pervasive Computing. 7(2):32-41.
Ciampolini, M., David, L. S., Riccardo, B., Boudewijn, D. P., Massimiliano, S., vanWeeren, M., Willemde, H., Lorenzo, B. and Pietrobelli, A. (2010). Sustained Self-Regulation of Energy Intake: Initial Hunger Improves Insulin Sensitivity. Journal of Nutrition and Metabolism.
Deborah, F. T., Wing, R. R. and Winett, R. A. (2001). Using Internet Technology to Deliver a Behavioral Weight Loss Program. Journal of American Medical Association, 285(9),1172-1177.
Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B. and Landay, J. (2009). UbiGreen: Investigating a Mobile Tool for Tracking and Supporting Green Transportation Habits. CHI 2009, Boston, Massachusetts, USA.
Garakani, A. B. (2009). Real-Time Classification of Everyday Fitness Activities on Windows Mobile. University of Washington.
Harrison, B. L., Consolvo, S. and Choudhury, T. (2008). Using Multi-modal Sensing for Human Activity Modeling in the Real World. Unpublished doctoral dissertation, Dartmouth College, Hanover, USA.
Heshka, S., James, W., Richard, A., Atkinson, L., Greenway, F. L., James, O. H., Stephen, D. P., Kolotkin, R. L., Karen, M.K. and Pi-Sunyer, F. X. (2003). Weight Loss With Self-help Compared With a Structured Commercial Program A Randomized Trial. The new england journal o f medicine, 289(14)1792-1798.
Intel Labs. (n.d.). Retrieved November 22, 2009, from http://techresearch.intel.com/articles/index.html
IOTF.ORG - International Obesity Taskforce. (n. d.). Retrieved May 12, 2010, from http://www.iotf.org/
Jessica, G.L., Gorin, A. A. and Wing, R. R. (2009). Behavioral self-regulation for weight loss in young adults: a randomized controlled trial. International Journal of Behavioral Nutrition and Physical Activity.
Kanfer, F. H., Goldstein, A. P. (1975). Helping people change: a textbook of methods. New York: Pergamon Press.
Kanya, B. N., Siangliulue, Y. and Yeung, S. Predicting Mode of Transport from iPhone Accelerometer Data. Retrieved January 5, 2010, From: http://www.stanford.edu/class/cs229/proj2008/NhamSiangliulueYeung-PredictingModeOfTransportFromIphoneAccelerometerData.pdf.
Lee, M.H., Kim, J., Kim, K., Lee, I., Jee, S. H., Yoo, S. K. (2009). Physical Activity Recognition Using a Single Tri-Axis Accelerometer. WCECS 2009, October 20-22, 2009, San Francisco, USA
Liao, L., Fox, D. and Kautz, H. (2007). Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields. International Journal of Robotics Research, Sage Publications, Inc. 2007(26), 119-134.
Meyer, D., Leisch, F. and Hornik, K. (2003). The support vector machine under test. Neurocomputing 55(1-2): 169-186
Narayanan, C., Krishnan, D., Colbry, C., Juillard and Sethuraman, P. C. (2008). Real time human activity recognition using tri-axial accelerometers.
Nintendo. (2006). What is wii? (n. d.). Retrieved May 1, 2010, from http://www.nintendo.com/wii/what
Norbert, G.R. •Fábián, A. and Hományi, G. (2008). An Activity Recognition System for Mobile Phones. Springer Science + Business Media,
Reddy, S., Burke, J., Estrin, D., Hansen, M., Srivastava, M. (2008). Determining Transportation Mode On Mobile Phones. IEEE International Symposium on Wearable Computers (ISWC).
Saponas, T.S., Lester, J., Froehlich, J., Fogarty, F. and Landay, J. (2008). iLearn on the iPhone: Real-Time Human Activity Classification on Commodity Mobile Phones. UW-CSE-08-04-02 Tech Report.
Smartphones, Cell Phones & Smart Phones at BlackBerry.com. (n. d.). Retrieved May 1, 2010, from http://www.blackberry.com/
Sohn, T., Varshavsky, A., LaMarca3, A., Chen, M. Y., Choudhury, T., Smith, I. (2006). Consolvo, S., Hightower, J., Griswold, W. G., and Lara, E. (2006). Mobility detection using everyday GSM traces. Proceedings of the 8th International Conference on Ubiquitous Computing (UbiComp 2006). 212-224.
Tate, D.F., Jeffery, R. W., Sherwood, N. E., Wing, R. R. (2007). Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? Am J Clin Nutr. 2007;85(4):954–959.
Weka 3 - Data Mining with Open Source Machine Learning Software in Java. (n. d.). Retrieved December 8, 2009, from
http://www.cs.waikato.ac.nz/ml/weka/
WHO | World Health Organization. (n. d.). Retrieved May 15, 2010, from http://www.who.int/en/
Windows Mobile Developer Center. (n. d.). Retrieved November 19, 2009, from http://msdn.microsoft.com/en-us/windowsmobile/default.aspx
Wing, R. R., Deborah, F. T., Gorin, A. A., Hollie, A. Raynor, A. and Joseph, L. F. (2006). A Self-Regulation Program for Maintenance of Weight Loss. The new england journal o f medicine, 1563-1571.
Wu, W. (2009). Discrete Sampling. Stanford University, USA.
Yang, J. Y., Wang, J. S., Chen, Y. P. (2008). Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recognition Letters, 29, 2213-2220.
Zheng, Y., Li, Q., Chen, Y., Xie, X. and Ma, W. (2008). Understanding mobility based on GPS data. Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp 2008). ACM Press. 312-321.