研究生: |
辛怡瑩 Yi-Ying Hsin |
---|---|
論文名稱: |
以概念演化樹探討跨年級學生對演化概念之發展 |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 201 |
中文關鍵詞: | 概念發展 、演化 、跨年級 、演化樹 |
英文關鍵詞: | conceptal development, evolution, cross grade, evolutionary tree |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以問卷方式調查跨年級學生的演化概念,研究對象為國小六年級、國中一年級、高中一年級、高中二年級和大學一年級,每個年級施測人數約在110~140人,有效問卷共747份。
演化概念共分成四個主概念依序為「個別變異」、「遺傳決定」、「不同的存活率」和「累積世代的改變」,再細分成六個次概念依序為「變異的來源」、「族群裡的變異」、「可遺傳的變異」、「特定性狀比例改變」、「性狀的存活」和「適應」。
整合選擇與開放題之演化概念組合,以四個主概念做為分析單位,透過系統分類學的分析軟體PAUP* 4.0找出可能的概念演化樹,藉由本研究的數據資料進一步找出最適合的概念演化樹,用以解釋跨年級演化概念之發展和主概念之出現時間順序。
本研究結果發現如下,可分成五點說明:
1.尚未學習演化前的小六學生較容易使用外在、後天、短暫、特質類別來解釋演化概念,雖然經過教學的學生仍有此現象,但比例較為學習前低。
2.跨年級學生於選擇題和開放題的表現趨勢相近達高度相關,唯一差別在於開放題表現低於選擇題,整合兩種題型結果做為整體演化概念組合。
3.使用系統分類學繪製跨年級學生演化概念發展支序圖,科學模式的發展,在小六前已具備主概念三「不同的存活率」,小六發展出主概念一「個別變異」,國一階段依序發展出主概念二「遺傳決定」和主概念四「累積世代的改變」。
4.當主概念一「個別變異」尚未建立時,會影響主概念二「遺傳決定」的學習,嚴重甚至會導致主概念三「性狀的存活」轉變為混合類型,連同主概念四亦會出現混和或錯誤類型。
5.尚未經歷演化教學的小六學生出現的心智模式較少,經過國一教學後出現的心智模式類型則較多,因為結合初始和科學模式而產生較多的心智模式,直到高二階段以後心智模式類型才漸漸集中。
整體而言,學生都很容易使用外表能看到的特徵或特質來解釋演化過程,較缺乏深度思考其演化之內部機制。教學上可參考學生的概念發展歷程適時給予正確的引導,增加例子說明或是實際體驗演化活動,以協助學生在演化概念之發展可以更朝向科學模式邁進。
This is a cross-age study of students’ conceptions about evolutionary. This study investigated students at 6th grade, 8th grade, 9th grade, 10th grade, 11th grade (science major), and freshmen majored in Life Science. All questionnaires toward evolution theory are 747 copies. There are about 110~140 students in each grade.
Evolutionary concept divides into four major conceptions: individual variation, genetic determination, differential survival rates, and accumulation of changes over many generations. Major conceptions also divide into six small parts of sub-conceptions: the origin of species, variation within a population, variation inheritable, changes of the specific characters, and adaptation.
The result combines multiple choice questions with essay questions. Four conceptions are used for the analysis unit of Evolutionary concept. The study utilizes the software PAUP* 4.0 of phylogenetic systematics finding the fittest conceptual evolution tree of evolution concept. The fittest cladogram represents the developmental process of evolutionary concept and the order of four major conceptions.
The results are as follows:
First, most 6th students who don’t have the specified lesson of evolution often use external, acquired, transient, speculative types to explain the process of evolution. Even the students after learning the lesson, the result is still the same, but rate lower than before.
Second, the scores between multiple choice and essay questions have high correlation. The only difference is the score of essay questions lower than multiple choice ones. Therefore, integrating the two scores serves as the combination of the whole evolutionary concept.
Third, the fittest cladogram represents the development of the scientific model. Younger than 6th grade had the third major conceptions “differential survival rates”, and then the phase of 6TH grade has the first major conceptions “individual variation”. Finally , the phase of 7th grade has the second ones “genetic determination” and the forth ones “accumulation of changes over many generations.”
Forth, when students don’t establish the he first major conceptions “individual variation”, it will affect the learning of the second ones “genetic determination”, seriously also result in changing to mixed type of third ones “differential survival rates”, and then make the mistake or mixed types of the forth ones “accumulation of changes over many generations.”
Finally, the number of mental models at 6th grade is less than 7th grade after teaching and learning.It is because mental models combine initial ones into scientific ones because of learning.
To sum up, most students prefer the characters or speciality they can see to explain the process of evolution, and they ignore the inner mechanism of evolution. The development of concept can provide the teaching guide, giving the help at the right moment, and adding the examples or activities. It will make the development of evolutionary concept across to scientific model.
一、中文部分
吳怡嫺(2007):跨年級學生氣體心智模式演化歷程之探究與分析。台北市:國立 台灣師範大學碩士論文,未出版。
吳美芬(2002):師院學生演化概念認知之研究。國立新竹教育大學數理研究所碩士論文,未出版。
李學勇(2007):達爾文學說在二十世紀的演變。第七屆科學史研討會彙刊。中央研究員科學使委員會,169-181。
邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
林財庫(2005):創造進化論及其在科學教育上的一些應用,科學教育學刊,13(2),141-168。
林靜雯(2000):由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。台北市:國立臺灣師範大學碩士論文,未出版。
林靜雯(2006):由概念演化觀點探究不同教科書教—學序列對不同心智模式學生電學學習之影響。台北市:國立台灣師範大學博士論文,未出版。
林靜雯和邱美虹(2007):以概念演化觀點分析我國電學教科書之教-學序列。國立編譯館館刊,35(2),3-14。
茬家續(2007):高一學生生物演化概念分析與概念改變教學之研究。台北市:國立台灣師範大學碩士論文,未出版。
張春興(2005)。教育心理學—三化取向的理論與實踐。台北市:東華。
張賴妙理(1999):初任暨資深國中生物教師在運輸作用、遺傳與演化單元的教學表現之個案研究,國立台灣師範大學科學教育研究所博士論文,未出版。
陳藍萍(2004):高一學生生物演化概念之研究。國立台灣師範大學碩士論文,未出版。
陳炳亨(2007)。國民小學自然與生活科技五年級上學期。台南市:翰林。
陳炳亨(2007)。國民小學自然與生活科技五年級下學期。台南市:翰林。
陳炳亨(2007)。國民小學自然與生活科技六年級上學期。台南市:翰林。
陳炳亨(2007)。國民中學自然與生活科技一年級下學期。台南市:翰林。
康軒文教事業股份有限公司(2007)。國小自然與生活科技教師手冊第五冊(五上)。台北縣:康軒。
康軒文教事業股份有限公司(2007)。國小自然與生活科技教師手冊第六冊(五下)。台北縣:康軒。
康軒文教事業股份有限公司(2007)。國小自然與生活科技教師手冊第八冊(六下)。台北縣:康軒。
康軒文教事業股份有限公司(2007)。國中自然與生活科技第二冊(一下)。台北縣:康軒。
劉誠宗(2003):學生對物種起源的解釋架構一貫性之探析。台北市:國立台灣師範大學碩士論文,未出版。
蘇建中(2007)。國民小學自然與生活科技第五冊。台南市:南一。
蘇建中(2006)。國民中學自然與生活科技第二冊。台南市:南一。
蘇建中(2005)。高級中學基礎生物全冊。台南市:南一。
蘇建中(2007)。高級中學生物下冊。台南市:南一。
楊坤原和張賴妙理(2004):遺傳學迷思概念之文獻探討及其在教學上的啓示。科學教育學刊,12(3),365-398。
楊冠政(2007)。高級中學生物(下)。台北縣:龍騰文化。
二、英文部分
Albert H. Teich, Stephen D. Nelson, Celia McEnaney, and Stephen J. Lita (2001). AAAS Science and Technology Policy Yearbook 2001. Washington, DC: American Association for the Advancement of Science.
Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of research in science teaching, 39(10), 952-978.
Bishop, B. A. & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27, 415-427.
Bell, G. (1997). The basics of selection. New York and London: Chapman and Hall.
Brumby , M. N. (1984). Misconceptions about the concept of natural selection by medical biology students. Science Education, 68(4) ,493-503.
Crandall KA.(1994). Intraspecific cladogram estimation: accuracy at higher levels of divergence. Systematic Biology, 43, 222-235.
Campbell,N.A. & J.B. Reece. 2002. BIOLOGY, 6th ed. Benjamin Cummings, San Francisco, CA.
Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6):623-654.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science. Minneapolis: University of Minnesota Press.
Chi, M. T. H., Slotta, J. D. and de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
Chi, M.T.H. & Hausmann, R. G. M. (2003). Do radical discoveries require ontological shifts? In L. V. Shavinina (Ed.), International Handbook on Innovation. Elsevier Science Ltd., 430-444.
Chi, M. T. H. (2005). Commonsense conceptions of emergent process: Why some misconceptions are robust. The Journal of the Learning Science, 14(2), 161-199.
Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: An integrative model for teacher preparation. Journal of Teacher Education, 44(4), 263-272
Darwin, C. (1859). The Origin of Species by Means of Natural Selection, first edn, John Murray, London.
Darren A.(1997). Graphical explanation of basic phylogenetic terms. Download from http://www.ucmp.berkeley.edu/glossary/gloss1/phyly.html date:2007.03.15.
de Queiroz, K.(1988). Systematics and the Darwinian Revolution. Philosophy Science, 55, 238-259.
de Queiroz, K., and J. Gauthier(1994). Toward a phylogenetic system of biological nomenclature. Trends Ecol. Evol, 9: 27–31.
Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.
Downie, J. R., & Barron, N. J. (2000). Evolution and religion: attitudes of Scottish first year biology and medical students to the teaching of evolutionary biology. Journal of Biological Education, 34, 139–146.
Driver, R., Leach, J., Scott, P. & Wood-Robinson, C.(1994). Young people’s understanding of science concepts: Implications of cross-age studies for curriculum planning. Studies in Science Education, 24, 75-100.
Evans, E. M. (2000). The emergence of beliefs about the origins of species in school-age children. Merrill-Palmer Quarterly, 46(2), 221–254.
Evans, E. M. (2005). Teaching and learning about evolution. In Diamond, J. (Ed.), The Virus and the Whale: Explore Evolution in Creatures Small and Large. NSTA Press: Arlington, VA.
Evans, E. M. (2006). Everyday intuition: How children develop their concepts of evolution. ASTC Dimensions: Bimonthly News Journal of the Association of Science-Technology Centers, 11-13.
Ferrari, M., & Chi, M. T. H. (1998). The nature of naïve explanation of natural selection. International Journal of science education, 20(10), 1231-1256.
Fisher, K. M. & Lipson, J. I. (1985). Information processing interpretation of errors in college science learning. Instructional Science, 14, 49-74.
Geraedts, G. L., & Boersma K. Th. (2006). Reinventing natural selection. International Journal of Science Education, 28(8), 843-870.
Mahlon B. Hoagland, Bert Dodson, Judith Hauck (2001).Exploring the Way Life Works: The Science of Biology. Jones & Bartlett Publishers.
Haury, D. L. (1998). Teaching about Biodiversity. ERIC Clearinghouse for Science Mathematics and Environmental Education Columbus OH. ED433197.
Joel J. Mintzes, James H. Wandersee, & Joseph D. Novak (2002): Teaching Science for Understanding - A Human Constructivist View(黃台珠、熊召弟、王美芬、佘曉清、斬知勤、段曉林、熊同鑫譯)。台北市:心理出版社。(原著出版年:1998 年)。
Kettlewell, H. B. D. (1973). The evolution of melanism: The study of a recurring necessity. Oxford: Oxford University Press.
Kuhn , T. S .(1962) . The structure of scienctific revolutions. Chicago : University of Chicago Press .Mahlon Hoagland, Bert Dodson, Judith Hauck(2001):Exporing the way Life works: The science of biology. Jones and Bartlett Publishers, Inc.
Lin, J. W., & Chiu, M. H. (2007). Students’ conceptual evolution in electricity—An empirical evaluation of cladistical perspective. Paper presented at the NARST 2007, April 15-18, New Orleans, U.S.A.
Mahlon Hoagland, Bert Dodson, Judith Hauck(2001):Exporing the way Life works: The science of biology. Jones and Bartlett Publishers, Inc.
Mayr, E. (1982). The growth of biological thought. Cambridge, MA: Belknap.
Mayr, E. (1997). This is biology- the science of the living world. Cambridge, MA:Belknap.
Mooreead, Alan (1971). Darwin and the Beagle. New York, Harmondsworth: Penguin. Muthukrishna, N., Carnine, D., Grossen, G., & Miller, S. (1993). Children's
Alternative Frameworks: Should They Be Directly Addressed in Science Instruction? Journal of Research in Science Teaching, 30(3), 233-248.
Ohlsson, S. (1991). Young adults’ understanding of evolutionary explanations: Preliminary observations. Technical Report. Learning Research and Development Center, University of Pittsburgh.
Popper, K. R. (1968). Conjectures and refutations : the growth of scientific knowledge, London: Routledge & Kegan Paul.
Popper, K. R. (1972). Objective knowledge: An evolutionary approach approach. Oxford: Oxford University Press.
Posner, J., Strike, K., Hewson, P., & Gertzog, W. ( 1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
Riedl, R. (1977). A systems-analytical approach to macro-evolutionary phenomena. The Quarterly review of biology, 52, 351-370.
Settlage, J. (1994). Conceptions of Natural Selection: A Snapshot of the Sense-Making Process. Journal of Research in Science Teaching, 31(5), 449-457.
Shemesh, M. & Lazarowitz, R. (1989). Pupils’ reasoning skills and their mastery of biological concepts. Journal of Biological Education, 23(1), 59-63.
Shtulman, A. (2006). Qualitative differences between naïve and scientific theories of evolution. Cognitive Psychology, 52(2), 170-194.
Stern, L. (2004). Effective assessment: Probing students’ understanding of natural selection. Journal of Biological Education, 39, 12-17.
Strike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147-176). Albany, NY: State University of New York Press.
Slotta, J. D., & Chi, M. T. H. (2006). Helping students understand challenging topics in science through ontology training. Cognition and Instruction, 24(2), 261-289.
Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University Press.
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Vosniadou, S. (1994). Capturing and modeling the process of conceptual change [special issue]. Learning and Instruction, 4, 45-69.
Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20(10), 1213-1230
Wiley, E. O. (1975). Karl R. Popper, systematics, and classification: A reply to Walter Bock and other evolutionary systematists. Syst. Zool. 24, 233–243.
Wiley, E. O., Siegel-Causey, D., Brooks, D. R., & Funk, V. A. (1993). The compleat cladist: a primer of phylogenetic procedures (Vol. 19, Special publication) 2nd. Lawrence: Museum of Natural History.