研究生: |
廖重皓 Liao, Chung-Hao |
---|---|
論文名稱: |
鋰氧氣電池之釕貴金屬催化反應機制 Mechanism of Noble Metal Ruthenium Catalyzed Reaction in Lithium Oxygen Batteries |
指導教授: |
胡淑芬
Hu, Shu-Fen |
口試委員: |
劉佳兒
Liu, Chia-Erh 江佩勳 Jiang, Pei-Hsun 胡淑芬 Hu, Shu-Fen |
口試日期: | 2023/07/25 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 鋰氧氣電池 、Ru/CNT陰極 、貴金屬催化機制 、奈米X光繞射 |
英文關鍵詞: | Li–O2 battery, Ru/CNT cathode, noble metal catalytic mechanism, X-ray Nanodiffraction |
研究方法: | 實驗設計法 、 紮根理論法 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202301001 |
論文種類: | 學術論文 |
相關次數: | 點閱:105 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來鋰氧氣電池之研究受到高度重視,因其具極高之能量密度,被視為新世代電動車能源。然而目前於實際應用上仍然存在許多挑戰,例如:過電位高、循環穩定性差、低充電速率,此些問題均與鋰氧氣電池放電產物Li2O2之差勁導電性、導離子性相關。目前研究中,普遍使用貴金屬釕Ru進行催化,並與多壁奈米碳管形成陰極複合材料(Ru/CNT),使用Ru/CNT陰極具大表面積、高放電容量與較低過電位之特點。然而我們對於釕金屬之催化機制了解甚少,且相較於傳統鋰離子電池仍然存在過高之過電位與低循環性能。
本研究藉由濺鍍技術控制局部性分布之釕金屬催化劑,探討貴金屬Ru之充電反應催化機制,並使用奈米X光繞射儀觀測Li2O2之分解與Ru之局部性分布關係。本研究顯示液態電池系統中Li2O2為均相分解,固態電池系統中Li2O2為異相分解,與Ru接觸之Li2O2先行被分解,表示電解液(TEGDME)參與Ru之催化作用,Ru催化效果與電解液之分解相關,其分解之可溶性副產物充當電子受體Acceptor或Redox Mediator (RM),幫助絕緣之Li2O2傳導電子,藉此有效降低充電過電位,但同時也縮短電池之循環壽命。
In recent years, research on lithium-oxygen battery has been highly valued, because of their extremely high energy density, it is regarded as the energy source of the new generation of electric vehicles. However, practical applications still face many challenges, such as high overpotential, poor cycle stability, and low charging rate. These problems are all related to the poor conductivity and ion conductivity of Li2O2, the discharge product of lithium-oxygen batteries. In the current research, the noble metal ruthenium Ru is commonly used for catalysis, and the cathode composite material (Ru/CNT) is formed with multi-walled carbon nanotubes. The Ru/CNT cathode has the characteristics of a large surface area, high discharge capacity, and low overpotential. However, we know little about the catalytic mechanism of ruthenium metal, and compared with traditional lithium-ion batteries, there are still too high overpotential and low cycle performance.
In this study, the locally distributed ruthenium metal catalyst was controlled by sputtering technology. The catalytic mechanism of the charging reaction of noble metal Ru was investigated. The relationship between the decomposition of Li2O2 and the local distribution of Ru was observed using a nanometer X-ray diffractometer. This study shows that Li2O2 decomposes in a homogeneous process in a liquid battery system, and Li2O2 decomposes in a heterogeneous process in a solid-state battery system. The Li2O2 in contact with Ru is decomposed first, which means that the electrolyte (TEGDME) participates in the catalysis of Ru. The catalytic effect of Ru is related to the decomposition of the electrolyte. The soluble by-products of its decomposition act as electron acceptors or Redox Mediators (RM), helping the insulating Li2O2 conduct electrons, thereby effectively reducing the charging overpotential and shortening the battery's cycle life.
[1]Bresadola, M. Medicine and Science in the Life of Luigi Galvani (1737–1798). Brain Res. Bull. 1998, 46, 367–380.
[2]Cecchini, R.; Pelosi, G. Alessandro Volta and His Battery. IEEE Antennas Propag Mag 1992, 34, 30–37.
[3]Scrosati, B. History of Lithium Batteries. J Solid State Electrochem 2011, 15, 1623–1630.
[4]Watson, W. N.; Witherell, L. E.; Giguere, G. C. Increased Lead Absorption in Children of Workers in a Lead Storage Battery Plant. Occup Med (Lond) 1978, 759–761.
[5]Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
[6]Larcher, D.; Tarascon, J. M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29.
[7]Arbabzadeh, M.; Johnson, J. X.; Keoleian, G. A.; Rasmussen, P. G.; Thompson, L. T. Twelve Principles for Green Energy Storage in Grid Applications. Environ. Sci. Technol. 2016, 50, 1046–1055.
[8]Bilich, A.; Langham, K.; Geyer, R.; Goyal, L.; Hansen, J.; Krishnan, A.; Bergesen, J.; Sinha, P. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities. Environ. Sci. Technol. 2017, 51, 1043–1052.
[9]Pellow, M. A.; Emmott, C. J.; Barnhart, C. J.; Benson, S. M. Hydrogen or Batteries for Grid Storage? A Net Energy Analysis. Energy Environ. Sci. 2015, 8, 1938–1952.
[10]Ratnakumar, B. V.; Smart, M. C.; Kindler, A.; Frank, H.; Ewell, R.; Surampudi, S. Lithium Batteries for Aerospace Applications: 2003 Mars Exploration Rover. J. Power Sources 2003, 119–121, 906–910.
[11]Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y. Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies. J. Mater. Chem. A 2019, 7, 2942–2964, 10.1039/C8TA10513H.
[12]Whittingham, M. S. The Role of Ternary Phases in Cathode Reactions. J. Electrochem. Soc. 1976, 123, 315.
[13]Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126–1127.
[14]Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T. Nanostructured Electrode Materials for Electrochemical Energy Storage and Conversion. Energy Environ. Sci. 2008, 1, 621–638.
[15]Goodenough, J. B. Design Considerations. Solid State Ion 1994, 69, 184–198.
[16]Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Lixcoo2 (0<X<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783–789.
[17]G. Bruce, P. Solid-State Chemistry of Lithium Power Sources. ChemComm 1997, 1817–1824, 10.1039/A608551B.
[18]Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv. Mater. 1998, 10, 725–763.
[19]Ohzuku, T.; Ueda, A. Solid‐State Redox Reactions of Licoo2 (R3m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc. 1994, 141, 2972.
[20]Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188.
[21]Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes. Nat. Mater. 2002, 1, 123–128.
[22]Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in Understanding Mechanisms Underpinning Lithium–Air Batteries. Nat. Energy 2016, 1, 1–11.
[23]Liu, Y.; He, P.; Zhou, H. Rechargeable Solid‐State Li–Air and Li–S Batteries: Materials, Construction, and Challenges. Adv. Energy Mater. 2018, 8, 1701602.
[24]Chang, Z.; Xu, J.; Zhang, X. Recent Progress in Electrocatalyst for Li–O2 Batteries. Adv. Energy Mater. 2017, 7, 1700875.
[25]Shu, C.; Wang, J.; Long, J.; Liu, H. K.; Dou, S. X. Understanding the Reaction Chemistry During Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Adv. Mater. 2019, 31, 1804587.
[26]Liang, Z.; Zou, Q.; Wang, Y.; Lu, Y. C. Recent Progress in Applying in Situ/Operando Characterization Techniques to Probe the Solid/Liquid/Gas Interfaces of Li–O2 Batteries. Small Methods 2017, 1, 1700150.
[27]Lu, Y.-C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Lithium–Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance. Energy Environ. Sci. 2013, 6, 750–768.
[28]Mahne, N.; Fontaine, O.; Thotiyl, M. O.; Wilkening, M.; Freunberger, S. A. Mechanism and Performance of Lithium–Oxygen Batteries–a Perspective. Chem. Sci. 2017, 8, 6716–6729.
[29]Jung, J.-W.; Cho, S.-H.; Nam, J. S.; Kim, I.-D. Current and Future Cathode Materials for Non-Aqueous Li–Air (O2) Battery Technology–a Focused Review. Energy Stor. Mater. 2020, 24, 512–528.
[30]Zhang, J.; Sun, B.; McDonagh, A. M.; Zhao, Y.; Kretschmer, K.; Guo, X.; Wang, G. A Multi-Functional Gel Co-Polymer Bridging Liquid Electrolyte and Solid Cathode Nanoparticles: An Efficient Route to Li–O2 Batteries with Improved Performance. Energy Stor. Mater. 2017, 7, 1–7.
[31]Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. The Carbon Electrode in Nonaqueous Li–O2 Cells. J. Am. Chem. Soc. 2013, 135, 494–500.
[32]Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Bardé, F.; Bruce, P. G. The Lithium–Oxygen Battery with Ether‐Based Electrolytes. Angew. Chem. Int. Ed. 2011, 50, 8609–8613.
[33]Lu, Y.-C.; Shao-Horn, Y. Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li–O2 Batteries. J. Phys. Chem. Lett. 2013, 4, 93–99.
[34]McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry. J. Phys. Chem. Lett. 2011, 2, 1161–1166.
[35]McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D.; Viswanathan, V.; Hummelshøj, J.; Nørskov, J.; Luntz, A. Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O2 Batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.
[36]Radin, M. D.; Siegel, D. J. Charge Transport in Lithium Peroxide: Relevance for Rechargeable Metal–Air Batteries. Energy Environ. Sci. 2013, 6, 2370–2379.
[37]Radin, M. D.; Rodriguez, J. F.; Tian, F.; Siegel, D. J. Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not. J. Am. Chem. Soc. 2012, 134, 1093–1103.
[38]Gerbig, O.; Merkle, R.; Maier, J. Electron and Ion Transport in Li2o2. Adv. Mater. 2013, 25, 3129–3133.
[39]Tian, F.; Radin, M. D.; Siegel, D. J. Enhanced Charge Transport in Amorphous Li2o2. Chem. Mater. 2014, 26, 2952–2959.
[40]Wang, Y.; Lu, Y.-C. Nonaqueous Lithium–Oxygen Batteries: Reaction Mechanism and Critical Open Questions. Energy Stor. Mater. 2020, 28, 235–246.
[41]Laoire, C. O.; Mukerjee, S.; Abraham, K.; Plichta, E. J.; Hendrickson, M. A. Elucidating the Mechanism of Oxygen Reduction for Lithium–Air Battery Applications. J. Phys. Chem. C 2009, 113, 20127–20134.
[42]Laoire, C. O.; Mukerjee, S.; Abraham, K.; Plichta, E. J.; Hendrickson, M. A. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium–Air Battery. J. Phys. Chem. C 2010, 114, 9178–9186.
[43]Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Oxygen Reactions in a Non‐Aqueous Li+ Electrolyte. Angew. Chem. Int. Ed. 2011, 50, 6351–6355.
[44]Lyu, Z.; Zhou, Y.; Dai, W.; Cui, X.; Lai, M.; Wang, L.; Huo, F.; Huang, W.; Hu, Z.; Chen, W. Recent Advances in Understanding of the Mechanism and Control of Li 2o2 Formation in Aprotic Li–O2 Batteries. Chem. Soc. Rev. 2017, 46, 6046–6072.
[45]Johnson, L.; Li, C.; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J.-M.; Bruce, P. G. The Role of Lio2 Solubility in O2 Reduction in Aprotic Solvents and Its Consequences for Li–O2 Batteries. Nat. Chem. 2014, 6, 1091–1099.
[46]Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating Additives Drive Solution-Mediated Electrochemistry and Enhance Toroid Growth in Non-Aqueous Li–O2 Batteries. Nat. Chem. 2015, 7, 50–56.
[47]Kang, S.; Mo, Y.; Ong, S. P.; Ceder, G. A Facile Mechanism for Recharging Li2o2 in Li–O2 Batteries. Chem. Mater. 2013, 25, 3328–3336.
[48]Ganapathy, S.; Adams, B. D.; Stenou, G.; Anastasaki, M. S.; Goubitz, K.; Miao, X.-F.; Nazar, L. F.; Wagemaker, M. Nature of Li2o2 Oxidation in a Li–O2 Battery Revealed by Operando X-Ray Diffraction. J. Am. Chem. Soc. 2014, 136, 16335–16344.
[49]Mo, Y.; Ong, S. P.; Ceder, G. First-Principles Study of the Oxygen Evolution Reaction of Lithium Peroxide in the Lithium–Air Battery. Phys. Rev. B 2011, 84, 205446.
[50]Xie, J.; Dong, Q.; Madden, I.; Yao, X.; Cheng, Q.; Dornath, P.; Fan, W.; Wang, D. Achieving Low Overpotential Li–O2 Battery Operations by Li2o2 Decomposition through One-Electron Processes. Nano Lett. 2015, 15, 8371–8376.
[51]Wang, Y.; Lai, N.-C.; Lu, Y.-R.; Zhou, Y.; Dong, C.-L.; Lu, Y.-C. A Solvent-Controlled Oxidation Mechanism of Li2o2 in Lithium–Oxygen Batteries. Joule 2018, 2, 2364–2380.
[52]Luo, L.; Liu, B.; Song, S.; Xu, W.; Zhang, J.-G.; Wang, C. Revealing the Reaction Mechanisms of Li–O2 Batteries Using Environmental Transmission Electron Microscopy. Nat. Nanotechnol. 2017, 12, 535–539.
[53]Zhong, L.; Mitchell, R. R.; Liu, Y.; Gallant, B. M.; Thompson, C. V.; Huang, J. Y.; Mao, S. X.; Shao-Horn, Y. In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li2o2. Nano Lett. 2013, 13, 2209–2214.
[54]Kushima, A.; Koido, T.; Fujiwara, Y.; Kuriyama, N.; Kusumi, N.; Li, J. Charging/Discharging Nanomorphology Asymmetry and Rate-Dependent Capacity Degradation in Li–Oxygen Battery. Nano Lett. 2015, 15, 8260–8265.
[55]Liu, P.; Han, J.; Guo, X.; Ito, Y.; Yang, C.; Ning, S.; Fujita, T.; Hirata, A.; Chen, M. Operando Characterization of Cathodic Reactions in a Liquid-State Lithium-Oxygen Micro-Battery by Scanning Transmission Electron Microscopy. Sci. Rep. 2018, 8, 3134.
[56]He, K.; Bi, X.; Yuan, Y.; Foroozan, T.; Song, B.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Operando Liquid Cell Electron Microscopy of Discharge and Charge Kinetics in Lithium–Oxygen Batteries. Nano Energy 2018, 49, 338–345.
[57]Wang, J.; Zhang, Y.; Guo, L.; Wang, E.; Peng, Z. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium‐O2 Batteries at the Stage of Sudden Death. Angew. Chem. Int. Ed. 2016, 55, 5201–5205.
[58]Peng, Q.; Chen, J.; Ji, H.; Morita, A.; Ye, S. Origin of the Overpotential for the Oxygen Evolution Reaction on a Well-Defined Graphene Electrode Probed by in Situ Sum Frequency Generation Vibrational Spectroscopy. J. Am. Chem. Soc. 2018, 140, 15568–15571.
[59]Zheng, H.; Xiao, D.; Li, X.; Liu, Y.; Wu, Y.; Wang, J.; Jiang, K.; Chen, C.; Gu, L.; Wei, X. New Insight in Understanding Oxygen Reduction and Evolution in Solid-State Lithium–Oxygen Batteries Using an in Situ Environmental Scanning Electron Microscope. Nano Lett. 2014, 14, 4245–4249.
[60]Zhai, D.; Wang, H.-H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. Disproportionation in Li–O2 Batteries Based on a Large Surface Area Carbon Cathode. J. Am. Chem. Soc. 2013, 135, 15364–15372.
[61]Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The Role of Catalysts and Peroxide Oxidation in Lithium–Oxygen Batteries. Angew. Chem. Int. Ed. 2013, 52, 392–396.
[62]Wang, Y.; Lu, Y. C. Isotopic Labeling Reveals Active Reaction Interfaces for Electrochemical Oxidation of Lithium Peroxide. Angew. Chem. Int. Ed. 2019, 131, 7036–7040.
[63]Fan, W.; Snyder, M. A.; Kumar, S.; Lee, P.-S.; Yoo, W. C.; McCormick, A. V.; Lee Penn, R.; Stein, A.; Tsapatsis, M. Hierarchical Nanofabrication of Microporous Crystals with Ordered Mesoporosity. Nat. Mater. 2008, 7, 984–991.
[64]Xie, J.; Yao, X.; Cheng, Q.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. Three Dimensionally Ordered Mesoporous Carbon as a Stable, High‐Performance Li–O2 Battery Cathode. Angew. Chem. Int. Ed. 2015, 127, 4373–4377.
[65]Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58.
[66]Dai, J.; Kogut, T.; Jin, L.; Reisner, D. Carbon Nanotube Electrode Materials for Li–Air Cells. ECS Trans 2008, 6, 381.
[67]Nomura, A.; Mizuki, E.; Ito, K.; Kubo, Y.; Yamagishi, T.; Uejima, M. Highly-Porous Super-Growth Carbon Nanotube Sheet Cathode Develops High-Power Lithium-Air Batteries. Electrochim. Acta 2021, 400, 139415.
[68]Maheshwari, P. H. Developing the Processing Stages of Carbon Fiber Composite Paper as Efficient Materials for Energy Conversion, Storage, and Conservation. Materials Science for Energy Technologies 2019, 2, 490–502.
[69]Shui, J.; Du, F.; Xue, C.; Li, Q.; Dai, L. Vertically Aligned N-Doped Coral-Like Carbon Fiber Arrays as Efficient Air Electrodes for High-Performance Nonaqueous Li–O2 Batteries. ACS Nano 2014, 8, 3015–3022.
[70]Lim, A. C.; Kwon, H. J.; Lee, H. C.; Lee, D. J.; Lee, H.; Kim, H. J.; Im, D.; Seo, J. G. Mechanically Reinforced-Cnt Cathode for Li-O2 Battery with Enhanced Specific Energy Via Ex Situ Pore Formation. Chem. Eng. J. 2020, 385, 123841.
[71]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669.
[72]Xiao, J.; Mei, D.; Li, X.; Xu, W.; Wang, D.; Graff, G. L.; Bennett, W. D.; Nie, Z.; Saraf, L. V.; Aksay, I. A. Hierarchically Porous Graphene as a Lithium–Air Battery Electrode. Nano Lett. 2011, 11, 5071–5078.
[73]Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. A Reversible and Higher-Rate Li-O<Sub>2</Sub> Battery. Science 2012, 337, 563–566.
[74]Li, F.; Chen, Y.; Tang, D.-M.; Jian, Z.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. Performance-Improved Li–O2 Battery with Ru Nanoparticles Supported on Binder-Free Multi-Walled Carbon Nanotube Paper as Cathode. Energy Environ. Sci. 2014, 7, 1648–1652, 10.1039/C3EE44043E.
[75]Jeong, Y. S.; Park, J.-B.; Jung, H.-G.; Kim, J.; Luo, X.; Lu, J.; Curtiss, L.; Amine, K.; Sun, Y.-K.; Scrosati, B.; et al. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium–Air Batteries. Nano Lett. 2015, 15, 4261–4268.
[76]Lu, J.; Jung Lee, Y.; Luo, X.; Chun Lau, K.; Asadi, M.; Wang, H.-H.; Brombosz, S.; Wen, J.; Zhai, D.; Chen, Z.; et al. A Lithium–Oxygen Battery Based on Lithium Superoxide. Nature 2016, 529, 377–382.
[77]McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. On the Efficacy of Electrocatalysis in Nonaqueous Li–O2 Batteries. J. Am. Chem. Soc. 2011, 133, 18038–18041.
[78]Ma, S.; Wu, Y.; Wang, J.; Zhang, Y.; Zhang, Y.; Yan, X.; Wei, Y.; Liu, P.; Wang, J.; Jiang, K.; et al. Reversibility of Noble Metal-Catalyzed Aprotic Li–O2 Batteries. Nano Lett. 2015, 15, 8084–8090.
[79]Wong, R. A.; Yang, C.; Dutta, A.; O, M.; Hong, M.; Thomas, M. L.; Yamanaka, K.; Ohta, T.; Waki, K.; Byon, H. R. Critically Examining the Role of Nanocatalysts in Li–O2 Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS Energy Lett. 2018, 3, 592–597.
[80]Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Charging a Li–O2 Battery Using a Redox Mediator. Nat. Chem. 2013, 5, 489–494.
[81]Lestriez, B. Functions of Polymers in Composite Electrodes of Lithium Ion Batteries. C R Chim 2010, 13, 1341–1350.
[82]Sessler, G. Piezoelectricity in Polyvinylidenefluoride. J. Acoust. Soc. Am. 1981, 70, 1596–1608.
[83]Liu, F.; Hashim, N. A.; Liu, Y.; Abed, M. M.; Li, K. Progress in the Production and Modification of Pvdf Membranes. J. Membr. Sci. 2011, 375, 1–27.
[84]Papp, J. K.; Forster, J. D.; Burke, C. M.; Kim, H. W.; Luntz, A. C.; Shelby, R. M.; Urban, J. J.; McCloskey, B. D. Poly (Vinylidene Fluoride)(Pvdf) Binder Degradation in Li–O2 Batteries: A Consideration for the Characterization of Lithium Superoxide. J. Phys. Chem. Lett. 2017, 8, 1169–1174.
[85]Read, J. Characterization of the Lithium/Oxygen Organic Electrolyte Battery. J. Electrochem. Soc. 2002, 149, A1190.
[86]Li, J.; Lewis, R.; Dahn, J. Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries. Electrochem. Solid-State Lett. 2006, 10, A17.
[87]Abraham, K.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143, 1.
[88]Tan, P.; Jiang, H. R.; Zhu, X. B.; An, L.; Jung, C. Y.; Wu, M. C.; Shi, L.; Shyy, W.; Zhao, T. S. Advances and Challenges in Lithium–Air Batteries. Appl. Energy 2017, 204, 780–806.
[89]Li, J.; Ding, S.; Zhang, S.; Yan, W.; Ma, Z.-F.; Yuan, X.; Mai, L.; Zhang, J. Catalytic Redox Mediators for Non-Aqueous Li-O2 Battery. Energy Stor. Mater. 2021, 43, 97–119.
[90]Wang, L.; Zhang, Y.; Liu, Z.; Guo, L.; Peng, Z. Understanding Oxygen Electrochemistry in Aprotic Lio2 Batteries. Green Energy Environ. 2017, 2, 186–203.
[91]Guo, H.; Luo, W.; Chen, J.; Chou, S.; Liu, H.; Wang, J. Review of Electrolytes in Nonaqueous Lithium–Oxygen Batteries. Adv. Sustain. Syst. 2018, 2, 1700183.
[92]Wang, H.; Xie, K. Investigation of Oxygen Reduction Chemistry in Ether and Carbonate Based Electrolytes for Li–O2 Batteries. Electrochim. Acta 2012, 64, 29–34.
[93]Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Rechargeable Li–Air Batteries with Carbonate-Based Liquid Electrolytes. Electrochemistry 2010, 78, 403–405.
[94]Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047.
[95]Zhou, B.; Guo, L.; Zhang, Y.; Wang, J.; Ma, L.; Zhang, W. H.; Fu, Z.; Peng, Z. A High‐Performance Li–O2 Battery with a Strongly Solvating Hexamethylphosphoramide Electrolyte and a Lipon‐Protected Lithium Anode. Adv. Mater. 2017, 29, 1701568.
[96]Chen, Y.; Freunberger, S. A.; Peng, Z.; Bardé, F.; Bruce, P. G. Li–O2 Battery with a Dimethylformamide Electrolyte. J. Am. Chem. Soc. 2012, 134, 7952–7957.
[97]Liu, X.; Cui, B.; Liu, S.; Chen, Y. Progress of Non-Aqueous Electrolyte for Li-Air Batteries. J. mater. sci. chem. eng. 2015, 3, 1.
[98]Xu, D.; Wang, Z.-l.; Xu, J.-j.; Zhang, L.-l.; Zhang, X.-b. Novel Dmso-Based Electrolyte for High Performance Rechargeable Li–O2 Batteries. ChemComm 2012, 48, 6948–6950.
[99]Sharon, D.; Afri, M.; Noked, M.; Garsuch, A.; Frimer, A. A.; Aurbach, D. Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen. J. Phys. Chem. Lett. 2013, 4, 3115–3119.
[100]Li, Y.; Wang, X.; Dong, S.; Chen, X.; Cui, G. Recent Advances in Non‐Aqueous Electrolyte for Rechargeable Li–O2 Batteries. Adv. Energy Mater. 2016, 6, 1600751.
[101]Elia, G.; Hassoun, J.; Kwak, W.-J.; Sun, Y.-K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N. An Advanced Lithium–Air Battery Exploiting an Ionic Liquid-Based Electrolyte. Nano Lett. 2014, 14, 6572–6577.
[102]Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N. Lithium–Air Batteries Using Hydrophobic Room Temperature Ionic Liquid Electrolyte. J. Power Sources 2005, 146, 766–769.
[103]Mizuno, F.; Nakanishi, S.; Shirasawa, A.; Takechi, K.; Shiga, T.; Nishikoori, H.; Iba, H. Design of Non-Aqueous Liquid Electrolytes for Rechargeable Li–O2 Batteries. Electrochemistry 2011, 79, 876–881.
[104]Uludağ, A. A.; Erses Yay, A. S. Life Cycle Analysis of Lithium–Air Batteries Designed with Tegdme-Lipf6/Pvdf Aprotic Electrolytes. ACS Sustain. Chem. Eng. 2021, 9, 15406–15418.
[105]Nasybulin, E.; Xu, W.; Engelhard, M. H.; Nie, Z.; Burton, S. D.; Cosimbescu, L.; Gross, M. E.; Zhang, J.-G. Effects of Electrolyte Salts on the Performance of Li–O2 Batteries. J. Phys. Chem. C 2013, 117, 2635–2645.
[106]Zheng, J.; Andrei, P.; Hendrickson, M. a.; Plichta, E. The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li–Air and Li–Air Flow Batteries. J. Electrochem. Soc. 2010, 158, A43.
[107]He, P.; Zhang, T.; Jiang, J.; Zhou, H. Lithium–Air Batteries with Hybrid Electrolytes. J. Phys. Chem. Lett. 2016, 7, 1267–1280.
[108]Yu, T.; Yang, X.; Yang, R.; Bai, X.; Xu, G.; Zhao, S.; Duan, Y.; Wu, Y.; Wang, J. Progress and Perspectives on Typical Inorganic Solid-State Electrolytes. J. Alloys Compd. 2021, 885, 161013.
[109]Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. y. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate. J. Electrochem. Soc. 1990, 137, 1023.
[110]Xu, X.; Wen, Z.; Wu, X.; Yang, X.; Gu, Z. Lithium Ion‐Conducting Glass–Ceramics of Li1. 5al0. 5ge1. 5 (Po4) 3–Xli2o (X= 0.0–0.20) with Good Electrical and Electrochemical Properties. J. Am. Ceram. Soc. 2007, 90, 2802–2806.
[111]Fu, J. Fast Li+ Ion Conducting Glass-Ceramics in the System Li2o–Al2o3–Geo2–P2o5. Solid State Ion 1997, 104, 191–194.
[112]Amanchukwu, C. V.; Harding, J. R.; Shao-Horn, Y.; Hammond, P. T. Understanding the Chemical Stability of Polymers for Lithium–Air Batteries. Chem. Mater. 2015, 27, 550–561.
[113]Li, B.; Liu, Y.; Zhang, X.; He, P.; Zhou, H. Hybrid Polymer Electrolyte for Li–O2 Batteries. Green Energy Environ. 2019, 4, 3–19.