簡易檢索 / 詳目顯示

研究生: 孫御哲
Sun, Yu-Che
論文名稱: 2-氯-4-氟苯甲醚之質量解析臨界游離光譜研究
2-Chloro-4-fluoroanisole studied by mass-analyzed threshold ionization spectroscopy
指導教授: 曾文碧
Tzeng, Wen-Bih
林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 133
中文關鍵詞: 2-氯-4-氟苯甲醚共振增強多光子游離光譜第一電子激發態振動光譜質量解析臨界游離光譜
英文關鍵詞: 2-chloro-4-fluoroanisole, resonance-enhanced multiphoton ionization, vibronic, mass-analyzed threshold ionization
DOI URL: https://doi.org/10.6345/NTNU202203083
論文種類: 學術論文
相關次數: 點閱:75下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗應用單色共振雙光子游離(1C-R2PI)光譜術、雙色共振雙光子游離(2C-R2PI)光譜術以及質量解析臨界游離(MATI)光譜術來探討2-氯-4-氟苯甲醚的分子特性,利用以上技術精準量測分子於基態躍遷至第一電子激發態的能量、絕熱游離能及其第一電子激發態暨離子態的振動光譜。
    利用單色共振雙光子游離術與質量解析臨界游離光譜術,測得2-氯-4-氟苯甲醚和其同位素異構物(37Cl)有相同的第一電子躍遷能和絕熱游離能,分別為34621 ± 2 cm-1及67204 ± 5 cm-1,藉由第一電子激發態振動光譜的資訊,以不同中間態S100、S1X1、S1151、S16b1紀錄離子態振動光譜,依據實驗結果搭配理論計算,顯示大部分振動模式和苯環平面運動及取代基運動有關。
    將2-氯-4-氟苯甲醚與實驗室之前所測量過的2-氯苯甲醚、4-氟苯甲醚、苯甲醚以及2,4-雙氟苯甲醚的實驗數據做比較,讓我們更加了解氯和氟在苯甲醚上的取代基效應,以及對分子結構、躍遷能量的影響。利用理論計算的結果來解釋我們所觀察到的現象,並幫助我們完成分子光譜的標定。

    In this work we applied the resonant two-photon ionization and mass-analyzed threshold ionization techniques to investigate the molecular properties of 2-chloro-4-fluoroanisole. These techniques are used to record the vibronic and cation spectra which also determine the excitation energy and adiabatic ionization energy.
    The excitation energy of the S1←S0 transition (E1) and the adiabatic ionization energy (IE) of 2-chloro-4-fluoroanisole are found to be 34621 ± 2 cm-1 and 67204 ± 5 cm-1, respectively. Between 35Cl and 37Cl isotopomers for 2-chloro-4-fluoroanisole has the same excitation and ionization energies within present detection limit in our experiment. The cation spectra were obtained by ionizing via the 00, X1, 151, and 6b1 levels of the electronically excited S1 state. According to experimental results with theoretical calculations, the most of active vibrations of this molecule in S1 and D0 states are related to in-plane aromatic ring and substituent-active vibrations.
    Comparing the data of 2-chloro-4-fluoroanisole with those of o-chloroanisole, p-fluoroanisole, anisole, and 2,4-difluoroanisole, we can learn more about the substitution effects on the transition energy and molecular geometry. By using theoretical calculation results can explain phenomena that we observe in the experiment, and help us to assign the peaks from molecular spectra.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1. 簡介 1 1-2. 研究目的 7 第二章 光譜技術 10 2-1. 共振增強多光子游離光譜術(REMPI) 10 2-2. 單色共振雙光子游離光譜術(1C-R2PI) 12 2-3. 雙色共振雙光子游離光譜術(2C-R2PI) 15 2-4. 質量解析臨界游離光譜技術(MATI spectroscopy) 16 第三章 儀器部份 27 3-1. 真空系統 27 a. 束源氣室 31 b. 游離區 34 c. 飛行導管 36 d. 離子偵測區 36 3-2. 雷射系統 41 a. 固態銣釔鋁石榴石雷射(Nd:YAG laser) 41 b. 染料雷射(Dye Laser) 45 3-3. 同步與訊號收集 50 第四章 實驗過程 54 4-1. 實驗前準備 54 4-2. 實驗期間 59 第五章 理論計算及光譜分析 66 5-1. 概論 66 5-2. 基底函數組 78 5-3. 同位素分子 83 5-4. 光譜判定 84 第六章 實驗結果 90 6-1. 2-氯-4-氟苯甲醚之質譜 90 6-2. 第一電子激發態振動光譜(Vibronic spectra) 92 6-3. 光游離效率曲線(PIE curve) 97 6-4. 質量解析臨界游離光譜(MATI spectra) 98 第七章 討論 106 7-1. 電子躍遷能量及游離能 106 7-2. 分子構型與分子振動 110 第八章 結論 115 第九章 參考文獻 117 圖目錄 圖一、2-氯-4-氟苯甲醚之結構圖 9 圖二、1C-R2PI游離機制示意圖 13 圖三、2C-R2PI游離機制示意圖 15 圖四、2C-R2PI偵測游離能 15 圖五、質量解析臨界游離(MATI)光譜作用機制圖 17 圖六、MATI光譜實驗操作程式示意圖 18 圖七、雷德堡態分子軌道示意圖 21 圖八、雷德堡序列 22 圖九、遲滯電場造成游離能下降 24 圖十、高主量子數雷德堡態和零動能態示意圖 26 圖十一、主要真空腔體外部構造圖 29 圖十二、飛行時間質譜儀內部構造圖 30 圖十三、實驗裝置示意圖 30 圖十四、脈衝閥構造剖面圖 33 圖十五、MCP剖面圖 39 圖十六、Spectra-Physics LAB-190內部構造圖 42 圖十七、Spectra-Physics LAB-150內部構造圖 42 圖十八、Nd3+的能階圖 43 圖十九、Lambda Physik Scanmate UV染料雷射內部光路圖 46 圖二十、Laser 1 (Lab 190)系統光路圖 47 圖二十一、Laser 2 (Lab 150)系統光路圖 47 圖二十二、脈衝/延遲產生器DG-535與實驗儀器的連結示意圖 52 圖二十三、DG-535延遲時間示意圖 53 圖二十四、用additivity rule估計2-氯-4-氟苯甲醚之躍遷能量圖 56 圖二十五、R590染料資訊 57 圖二十六、R610染料資訊 57 圖二十七、SR640染料資訊 58 圖二十八、DCM染料資訊 58 圖二十九、質譜轉光譜圖 60 圖三十、2-氯-4-氟苯甲醚之1C-R2PI實驗記錄 61 圖三十一、2-氯-4-氟苯甲醚之PIE curve實驗記錄 64 圖三十二、2-氯-4-氟苯甲醚之MATI實驗記錄 65 圖三十三、2-氯-4-氟苯甲醚各原子的標號順序 67 圖三十四、位能曲面圖 69 圖三十五、2-氯-4-氟苯甲醚輸出檔之四項參數 69 圖三十六、2-氯-4-氟苯甲醚輸出檔 71 圖三十七、2-氯-4-氟苯甲醚之零點能 72 圖三十八、以數個GTO函數模擬STO函數示意圖 79 圖三十九、同位素的計算 83 圖四十、2-氯-4-氟苯甲醚的九種振動模式 85 圖四十一、苯環的三十種振動模式 88 圖四十二、1,4-Di-“light”-2-“heavy”系統的振動模式與振動頻率範圍 89 圖四十三、2-氯-4-氟苯甲醚的質譜 91 圖四十四、2-氯-4-氟苯甲醚的第一電子激發態振動光譜 94 圖四十五、35Cl- 2-氯-4-氟苯甲醚於第一電子激發態的振動模式及測量到的振動頻率,括號內為理論計算值 96 圖四十六、PIE curve和MATI spectrum對照圖 101 圖四十七、35Cl- 2-氯-4-氟苯甲醚的MATI光譜 102 圖四十八、37Cl- 2-氯-4-氟苯甲醚的MATI光譜 103 圖四十九、2-氯-4-氟苯甲醚躍遷能量之估計值與實驗值比較圖 109 圖五十、2-氯-4-氟苯甲醚標號圖 112 表目錄 表一、理論計算方法 73 表二、2-氯-4-氟苯甲醚於第一電子激發態振動光譜觀察到的譜峰頻率、理論計算數值、光譜標定及運動模式概述 95 表三、35Cl- 2-氯-4-氟苯甲醚於MATI光譜觀察到的譜峰頻率、理論計算數值、光譜標定及運動模式概述 104 表四、37Cl- 2-氯-4-氟苯甲醚於MATI光譜觀察到的譜峰頻率、理論計算數值、光譜標定及運動模式概述 105 表五、苯甲醚、2-氯苯甲醚、4-氟苯甲醚、2-氯-4-氟苯甲醚及2,4-二氟的電子躍遷能與游離能 108 表六、以理論計算RB3LYP/6-311++G(d,p) 、TD-B3LYP/6-311++G(d,p)及UB3LYP/6-311++G(d,p)方式預測2-氯-4-氟苯甲醚在基態S0、激發態S1及離子態D0的結構參數 111 表七、2-氯-4-氟苯甲醚在S1及D0能態之譜峰頻率比較 114 表八、2-氯-4-氟苯甲醚(2C4FAN)與2,4-二氟苯甲醚(24FAN)於S1能態之相同振動模式的頻率比較 114

    [1] T. H. Maiman, Nature 187 (1960) 493.
    (Stimulated optical radiation in ruby)
    [2] T. H. Maiman, Phys. Today 20 (1967) 24.
    (Laser applications)
    [3] S.V. Rahavendran, H.T. Karnes, Anal. Chem. 68 (1996) 3763.
    (Application of rhodamine 800 for reversed phase liquid
    chromatographic detection using visible diode laser-Induced
    fluorescence)
    [4] A. Nakajima, M. Hirano, R. Hasumi, K. Kaya, H. Watanabe, C.C. Carter, J.M. Williamson, T.A. Miller, J. Phys. Chem. A 101 (1997) 392.
    (High-Resolution Laser-Induced Fluorescence Spectra of 7-Azaindole−Water Complexes and 7-Azaindole Dimer)
    [5] H. Wang, J. Xing, W. Tan, M. Lam, T. Carnelley, M. Weinfeld, X.C. Le, Anal. Chem. 74 (2002) 3714.
    (Binding stoichiometry of DNA adducts with antibody studied by
    capillary electrophoresis and laser-induced fluorescence)
    [6] P.B. McKibbin, K. Otsuka, S. Terabe, Anal. Chem. 74 (2002) 3736.
    (On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection)
    [7] M. Takayanagi, D. Negishi, Y. Skurai, J. Phys. Chem. A 106 (2002) 7690.
    (Torsional potential of methyl group in m-tolunitrile-H2O and
    m-tolunitrile-N2O complexes studied by laser-induced
    fluorescence and hole-burning spectroscopies)
    [8] B.C. Giordano, L. Jin, A.J. Couch, J.P. Ferance, J.P. Landers, Anal. Chem. 76 (2004) 4705.
    (Microchip laser-induced fluorescence detection of proteins at
    submicrogram per milliliter levels mediated by dynamic labeling
    under pseudonative conditions)
    [9] T.G. Dietz, M.A. Duncan, M.G. Liveman, R.E. Smalley, J. Chem. Phys. 73 (1980) 4816.
    (Resonance enhanced two‐photon ionization studies in a supersonic
    molecular beam: Bromobenzene and iodobenzene)
    [10] W. C. Wiley, I. H. McLaren, Rev. Sci. Instrum. 26 (1955) 1150.
    (Time-of-Flight Mass Spectrometer with Improved Resolution)
    [11] C. R. C. Wang, C. C. Hsu, W. Y. Liu, W. C. Tsai, W. B. Tzeng, Rev. Sci. Instrum. 65 (1994) 2776.
    (Determination of laser beam waist using photoionization time-of-flight mass spectrometer)
    [12] K. Watanabe, J. Chem. Phys. 22 (1954) 1564.
    (Photoionization and total absorption cross section of gases. I.
    ionization potentials of several molecules. cross sections of NH3
    [13] C. Nordling, E. Sokolowski, K. Siegbahn , Phys. Rev. 105 (1957) 1676.
    (Precision Method for Obtaining Absolute Values of Atomic Binding
    Energies)
    [14] S. Hagstrom, C. Nordling, K. Siegbahn, Phys. Lett. 9 (1964) 235.
    (Electron spectroscopy for chemical analysis)
    [15] D. W. Turner, M. I. Al-Joboury, J. Chem. Phys. 37 (1962) 3007.
    (Determination of Ionization Potentials by Photoelectron Energy
    Measurement)
    [16] M. I. Al-Joboury, D. W. Turner, J. Chem. Soc. 985 (1963) 5141.
    (Molecular photoelectron spectroscopy. Part I. The hydrogen and nitrogen molecules)
    [17] M. C. R. Cockett, M. Takahashi, K. Okuyama, K. Kimura, Chem. Phys. Lett. 187 (1991) 250.
    (REMPI threshold photoelectron spectra of the cis and trans rotational isomers of jet-cooled m-chlorophenol)
    [18] G. C. King, A. J. Yencha, M. C. A. Lopes, J. Electron Spectrosc. Relat. Phenom. 114 (2001) 33.
    (Threshold photoelectron spectroscopy using synchrotron radiation)
    [19] D.Villarejo, R. R. Herm, M. G. Inghram, J. Chem. Phys. 46 (1967) 4995.
    (Measurement of threshold electrons in the photoionization of Ar, Kr, and X)
    [20] K. Muller-Dethlefs, M. Sander, E. W. Schlag, Chem. Phys. Lett. 112 (1984) 291.
    (Two-colour photoionization resonance spectroscopy of NO: Complete separation of rotational levels of NO+ at the ionization threshold)
    [21] L. A. Chewter, M. Sander, K. Muller-Dethlefs, E. W. Schlag, J. Chem. Phys. 86 (1987) 4737.
    (High resolution zero kinetic energy photoelectron spectroscopy of benzene and determination of the ionization potential)
    [22] E. W. Schlag, Cambridge University Press, Cambridge, (1998).
    (ZEKE Spectroscopy)
    [23] L. Zhu, P. M. Johnson, J. Chem. Phys. 94 (1991) 5769.
    (Mass analyzed threshold ionization spectroscopy)
    [24] H. Dickinson, T. Chelmick, T. P. Softley, Chem. Phys. Lett. 338 (2001) 37.
    ((2+1') mass analyzed threshold ionization (MATI) spectroscopy of the CD3 radical)
    [25] K. W. Choi, S. K. Kim, D. S. Ahn, S. Lee, J. Phys. Chem. A 108 (2004) 11292.
    (One-photon mass-analyzed threshold ionization spectroscopy of bis (η6-benzene)chromium and its benzene and Ar clusters)
    [26] L. Wu, C. H. Zhang, S. A. Krasnokutski, D. S. Yang, J. Chem. Phys. 137 (2012) 084312.
    (Mass-analyzed threshold ionization and structural isomers of M3O4 (M = Sc, Y, and La))
    [27] J. Braun, H. J. Neusser, P. Hobza, J. Phys. Chem. A 107 (2003) 3918.
    (N-H center dot center dot center dot pi interactions in indole center dot center dot center dot benzene-h(6),d(6) and indole center dot center dot center dot benzene-h(6),d(6) radical cation complexes. Mass analyzed threshold ionization experiments and correlated ab initio quantum chemical calculations)
    [28] S. Kumari, W. J. Cao, D. Hewage, R. Silva, D. S. Yang, J. Chem. Phys. 146 (2017) 074305.
    (Mass-analyzed threshold ionization spectroscopy of lanthanum-hydrocarbon radicals formed by C—H bond activation of propene)
    [29] C. Lauzin, U. Jacovella, F. Merkt, Mol. Phys. 113 (2015) 3918
    (Threshold ionization spectroscopy of H2O, HDO and D2O and low-lying vibrational levels of HDO+ and D2O+)
    [30] M. Miyazaki, S. Yoshikawa, F. Michels, K. Misawa, S. Ishiuchi, M. Sakai, O. Dopfer, K. Muller-Dethlefs, M. Fujii, Phys. Chem. Chem. Phys. 17 (2015) 2494.
    (Mass analyzed threshold ionization detected infrared spectroscopy: isomerization activity of the phenol-Ar cluster near the ionization threshold)
    [31] J. E. Braun, Th. Mehnert, H.J. Neusser, Inter. J. Mass Spect. 203 (2000) 1.
    (Binding energy of van der Waals- and hydrogen-bonded clusters by threshold ionization techniques)
    [32] R. Karaminkov, S. Chervenkov, H.J. Neusser, J. Phys. Chem. A 114 (2010) 11263.
    (Mass-analyed threshold ionization spectroscopy of ortho fluorinated 2-phenylethanol: identification of an additional gauche conformer)
    [33] S. T. Park, S. K. Kim, M. S. Kim, J. Chem. Phys. 115 (2001) 2492.
    (Vacuum-ultraviolet mass-analyzed threshold ionization spectra of iodobutane isomers: Conformer-specific ionization and ion-core dissociation followed by ionization)
    [34] C. Y. Li, J. L. Lin, W. B. Tzeng, J. Chem. Phys. 122 (2005) 044311.
    (Mass-analyzed threshold ionization spectroscopy of the rotamers of p-n-propylphenol cation and configuration effect)
    [35] J. G. Huang, J. L. Lin, W. B. Tzeng, Spectrochim. Acta A 67 (2007) 989.
    (Rotamers of m-cresol cations studied by mass analyzed threshold ionization spectroscopy)
    [36] J. L. Lin, C. J. Huang, C. H. Lin, W. B. Tzeng, J. Mol. Spectrosc. 244 (2007) 1.
    (Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline)
    [37] M. Lee, M. S. Kim, J. Phys. Chem. A 107 (2003) 11401.
    (One-Photon Mass-Analyzed Threshold Ionization Spectroscopy of trans- and cis-1-C3H5Br: Ionization Energies and Vibrational Assignments for the Cations)
    [38] Q. S. Zheng, T. I. Fang, B. Zhang, W. B. Tzeng, Chin. J. Chem. Phys. 22 (2009) 649.
    (Mass analyzed threshold ionization spectroscopy of Rotamers of p-ethoxyphenol)
    [39] S. C. Yang, S. W. Huang, W. B. Tzeng, J. Phys. Chem. A. 114 (2010) 11144.
    (Rotamers of o- and m-dimethoxybenzenes studied by mass-analyzed threshold ionization spectroscopy and theoretical calculations)
    [40] C. C. Qin, S. Y. Tzeng, B. Zhang, W. B. Tzeng, Chem. Phys. Lett. 503 (2011) 25.
    (Selected cis- and trans-p-methoxystyrene rotamers studied by mass-analyzed threshold ionization spectroscopy)
    [41] W. C. Huang, W. B. Tzeng, Trends in Appl. Spectrosc. 9 (2013) 75.
    (Rotamers of aromatic molecules studied by two-color resonant two photon ionization and mass-analyzed threshold ionization spectroscopy)
    [42] C. Y. Tsai, W. B. Tzeng, J. Photochem. and Photobio. A 270 (2013) 53.
    (Rotamers of 3,4-difluorophenol studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
    [43] V. Shivatare, W. B. Tzeng, Mol. Phys. 112 (2014) 2397.
    (Vibronic and cation spectroscopy of selected rotamers of 4-chloro-3-fluorophenol)
    [44] Y. Xu, S. Y. Tzeng, V. Shivatare, K. Takahashi, B. Zhang, and W. B. Tzeng, Spectrochim. J. Chem. Phys. 142 (2015) 124314.
    (Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy)
    [45] P. Y. Wu, W. B. Tzeng, J. Mol. Spectrosc. 316 (2015) 72.
    (Selected cis- and trans-3-fluorostyrene rotamers studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
    [46] P. Y. Wu, S. Y. Tzeng, C. Y. Tsai, W. B. Tzeng, Acta. Phys. Chim. Sin. 32 (2016) 893.
    (Rotamers of 2,5-difluorophenol studied using mass-analyzed threshold ionization spectroscopy)
    [47] S. Liu, L. J. Tzeng, W. S. Dai, M. Cheng, Y. K. Du, Q. H. Zhu, J. Mol. Spectrosc. 336 (2017) 12.
    (REMPI and MATI spectroscopy of cis and trans 3-chloro-N-methylaniline)
    [48] S. Ketkov, N. Isachenkov, E. Rychagova, W. B. Tzeng, Dalton Trans. 43 (2014) 17703.
    (Electronic excited states of chromium and vanadium bisarene complexes revisited: interpretation of the absorption spectra on the basis of TD-DFT calculations)
    [49] S. Y. Ketkov, G. V. Markin, S. Y. Tzeng, W. B. Tzeng, Chem. Eur. J. 22 (2016) 4690.
    (Fine substituent effects in sandwich complexes: first threshold
    ionization study of monosubstituted chromium bisarene compounds)
    [50] G. S. Hiers, F. D. Hager, Org. Synth. 1 (1941) 55.
    (Anisole)
    [51] M. Pradhan, C. Y. Li, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 407 (2005) 100.
    (Mass analyzed threshold ionization spectroscopy of anisole cation and the OCH3 substitution effect)
    [52] H. C. Huang, B. Y. Jin, W. B. Tzeng, J. Photochem. Photobio. A 243 (2012) 73.
    (Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of o-chloroanisole)
    and the OCH3 substitution effect)
    [53] H. C. Huang, K. S. Shiung, B. Y. Jin, W. B. Tzeng, Chem. Phys. 425 (2013) 114.
    (Rotamers of m-chloroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
    [54] K. S. Shiung, D. Yu, S. Y. Tzeng, W. B. Tzeng, Chem. Phys. Lett. 524 (2012) 38.
    (Cation spectroscopy of o-fluoroanisole and p-fluoroanisole by two-color resonant two-photon mass-analyzed threshold ionization)
    [55] K. S. Shiung, D. Yu, H. C. Huang, W. B. Tzeng, J. Mol. Spectrosc. 274 (2012) 43.
    (Rotamers of m-fluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
    [56] Y. Xu, S. Y. Tzeng, B. Zhang, W. B. Tzeng, Spectrochim. Acta A 102 (2013) 365.
    (Rotamers of 3,4-difluoroanisole studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy)
    [57] J. G. Huang, C. Y. Li, W. B. Tzeng, Chem. Phys. Lett. 414 (2005) 276.
    (Mass analyzed threshold ionization spectroscopy of p-methylanisole cation and the substitution effect)
    [58] C. Qin, S. Y. Tzeng, B. Zhang, W. B. Tzeng, Acta. Phys. Chim. Sin. 30 (2014) 1416.
    (Rotamers of m-methylanisole studied by mass-analyzed threshold ionization spectroscopy)
    [59] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 113 (2000) 4109.
    (Mass analyzed threshold ionization of the 35Cl and 37Cl isotopomers of p-chloroaniline)
    [60] J. L. Lin, W. B. Tzeng, J. Chem. Phys. 115 (2001) 743.
    (Mass analyzed threshold ionization of deuterium substituted isotopomers of aniline and p-fluoroaniline: Isotope effect and site-specific electronic transition)
    [61] J. L. Lin, S. C. Yang, Y. C. Yu, W. B. Tzeng, Chem. Phys. Lett. 356 (2002) 267.
    (Mass analyzed threshold ionization of p-bromoaniline: Heavy atom effects on electronic transition, ionization, and molecular vibration)
    [62] J.L. Lin, K.C. Lin, W. B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
    (Mass analyzed threshold ionization spectroscopy of o-, m-, p-methylaniline cations: Vicinal substitution effects on electronic transition, ionization, and molecular vibration)
    [63] S. C. Yang, J. L. Lin, W. B. Tzeng, Chem. Phys. Lett. 362 (2002) 19.
    (Mass analyzed threshold ionization spectroscopy of p-ethylaniline cation: Alkyl chain effects on ionization and molecular vibration)
    [64] J. L. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
    (Mass analyzed threshold ionization spectroscopy of p-methoxylaniline cation and influence of the OCH3 substituent)
    [65] J. L. Lin, J. L. Lin, W. B. Tzeng, Chem. Phys. 295 (2003) 97.
    (Mass analyzed threshold ionization spectroscopy of N-methylaniline and N-ethylaniline cations: Isotope effect on transition energy and large amplitude vibrations)
    [66] J. L. Lin, C. J. Huang, C. H. Lin, W. B. Tzeng, J. Mol. Spectrosc. 244 (2007) 1.
    (Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline)
    [67] W.C. Huang, W.B. Tzeng, J. Mol. Spectrosc. 266 (2011) 52.
    (Cation spectroscopy of 3,4-difluoroaniline by two-color resonant two-photon mass-analyzed threshold ionization)
    [68] W. C. Huang, W. L. Yeh, W. B. Tzeng, J. Mol. Spectrosc. 269 (2011). 248
    (Vibronic and cation spectroscopy of m-chloroaniline)
    [69] W. C. Huang, P. S. Huang, C. H. Hu, W. B. Tzeng, Spectrochim. Acta A 93 (2012) 176.
    (Vibronic and cation spectroscopy of 2,4-difluoroaniline)
    [70] Y. J. Su, W. B. Tzeng, Tzeng, Chem. Phys. Lett. 543 (2012) 19.
    (Vibronic and cation spectroscopy of p-ethynylaniline)
    [71] S. Y. Tzeng, C. W. Dong, W. B. Tzeng, Chem. Phys. 407 (2012) 71.
    (Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of p-vinylaniline)
    [72] K. W. Lo, W. B. Tzeng, J. Mol. Spectrosc. 288 (2013) 1.
    (3-Chloro-4-fluoroaniline studied by resonant two-photo ionization and mass-analyzed threshold ionization spectroscopy)
    [73] W. C. Huang, P. S. Huang, C. H. Hu, W. B. Tzeng, Chem. Phys. Lett. 580 (2013) 28.
    (Resonant two-photon mass-analyzed threshold ionization of 2,5-difluoroaniline)
    [74] Y. H. Huang, W. C. Huang, W. B. Tzeng, Chem. Phys. Lett. 595 (2014) 73.
    (4-Chloro-3-fluoroaniline studied by resonant two-photo ionization and mass-analyzed threshold ionization spectroscopy)
    [75] P. Y. Wu, H. H. Huang, K. C. Lin, W. B. Tzeng, Chem. Phys. Lett. 682 (2017) 34.
    (Two-color resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 4-chlorostyrene)
    [76] P. Y. Wu, S. Y. Tzeng, Y. C. Hsu, W. B. Tzeng, J. Mol. Spectrosc. 332 (2017) 3.
    (Ionization energy and active cation vibrations of trans-2-fluorostyrene)
    [77] C. H. Kwon, H. L. Kim, M. S. Kim, J. Phys. Chem. A 107 (2003) 10969.
    (Vibrational analysis of vacuum ultraviolet mass-analyzed threshold ionization spectra of phenylacetylene and benzonitrile)
    [78] D. Yu, C. W. Dong, M. Cheng, L. L. Hu, Y. K. Du, Q. H. Zhu, C. H. Zhang, J. Mol. Spectrosc. 265 (2011) 86.
    (Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of the 35Cl and 37Cl isotopomers of p-chloroanisole)
    [79] D. Yu, C. W. Dong, L. J. Zhang, M. Cheng, L. L. Hu, Y. K. Du, Q. H. Zhu, C. H. Zhang, J. Mol. Struct. 1000 (2011) 92.
    (Resonant two-photon ionization spectroscopy of the 35Cl and 37Cl isotopomers of cis and trans 3-chloro-4-fluoroanisole)
    [80] L.J. Zhang, D. Yu, C.W. Dong, M. Cheng, L. L. Hu, Z. M. Zhou, Y. K. Du, Q. H. Zhu, C. H. Zhang, Spectrochim. Acta A 104 (2013) 235.
    (Rotamers and isotopomers of 3-chloro-5-fluoroanisole studied by resonant two-photon ionization spectroscopy and theoretical calculations)
    [81] S. C. Yang, W. B. Tzeng, J. Mol. Spectrosc. 269 (2011) 49-55.
    (Mass-analyzed threshold ionization spectroscopy of deuterium-substituted isotopomers of o-fluoroaniline and m-fluoroaniline cations)
    [82] C. Y. Li, M. Pradhan, W. B. Tzeng, Chem. Phys. Lett. 411 (2005) 506.
    (Mass analyzed threshold ionization spectroscopy of p-cyanophenol cation and the CN substitution effect)
    [83] J. L. Lin, Y. C. Li, W. B. Tzeng, Chem. Phys. 334 (2007) 189.
    (Mass analyzed threshold ionization spectroscopy of aza-aromatic bicyclic molecules: Benzimidazole and benzotriazole)
    [84] S. Y. Tzeng, J. Y. Wu, S. D. Zhang, W.B. Tzeng, J. Mol. Spectrosc. 281 (2012) 40.
    (Resonant two-photon mass-analyzed threshold ionization spectroscopy of 1-fluoronaphthalene and 2-fluoronaphthalene)
    [85] V. Shivatarea, S. Y. Tzeng, W. B. Tzeng, Chem. Phys. Lett. 558 (2013) 20.
    (Active vibrations of 1-cyanonaphthalene cation studied by mass-analyzed threshold ionization spectroscopy)
    [86] V. Shivatare , W. B. Tzeng, J. Phys. Chem. A 118 (2014) 8277.
    (Studies of structural isomers o-, m-, and p-fluorophenylacetylene by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy
    [87] W. A. Chupka, J. Chem. Phys. 98 (1993) 4520.
    (Factors affecting lifetimes and resolution of Rydberg states observed in zero‐electron‐kinetic‐energy spectroscopy)
    [88] U. Fano, Phys. Rev. A 2 (1970) 353.
    (Quantum defect theory of l uncoupling in H2 as an example of channel-interaction treatment)
    [89] F. Merkt, Annu. Rev. Phys. Chem. 48 (1997) 675.
    (molecules in high Rydberg states)
    [90] H. Dickinson, D. Rolland, T. P. Softley, J. Phys. Chem. A 105 (2001) 5590.
    (Multichannel quantum defect theory (MQDT) analysis of the (2+1') mass analyzed thresholdionization (MATI) spectroscopy of NH3)
    [91] M.J. Seaton, MNRAS 118 (1958) 504.
    (The quantum defect method)
    [92] J. D. Hofstein, J. G. Goode, P. M. Johnson, Chem. Phys. Lett. 301 (1999) 121.
    (A comparative investigation of Rydberg-state survival in several molecules using mass-analyzed threshold ionization)
    [93] F. B. Dunning, R. F. Stebbings, Rydberg states of atoms and molecules, Cambridge University Press, Cambridge, 1983
    [94] W.A. Chupka, J. Chem. Phys. 99 (1993) 5800.
    (Lifetimes of very high Rydberg states of aromatic molecules)
    [95] S. H. Autler, C. H. Townes, Phys. Rev. 100 (1955) 703.
    (Stark Effect in Rapidly Varying Fields)
    [96] H. Ikoma, K. Takazawa, Y. Emura, S. Ikeda, H. Abe, H. Hayashi, M. Fujii, J. Chem. Phys. 105 (1996) 10201.
    (Internal rotation of methyl group in o- and m-toluidine cations as studied by pulsed field ionization-zero kinetic energy spectroscopy)
    [97] J. H. Moore, C. C. Davis, M. A. Coplan, S. C. Greer, Building scientific appaeatus, University of Maryland, College Park, 2002
    [98] User’s manual (Spectra-Physics LAB-150), Spectra-Physics,1335 terra bella avenue mountain View, 2003
    [99] User’s manual (Lambda Physik Scanmate), Lambda Physik USA, 3201 West Commerical Blvd, 2005
    [100] Exciton Laser Dyes 30 Years of Excellence and More Brilliant Than Ever, Excition, INC, 1992
    [101] U. Brackmann, Lambdachrome Laser Dyes 2nd revised edition, Lambda Physik GmbH, 1997
    [102] Gaussian 09, Revision A.02,, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    [103] James B. Foresman, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., 2nd Ed, 1996.
    [104] R. McWeeny, G. Dierksen, J. Chem. Phys. 49 (1968) 4852.
    (Self‐Consistent Perturbation Theory. II. Extension to Open Shells)
    [105] A. D. Becke, J.Chem. Phys. 97 (1992) 9173
    (Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction)
    [106] P. M. W. Gill, B. G. Johnson, J. A. Pople, M. J. Frisch, Chem. Phys. Lett.197 (1992) 499.
    (The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets)
    [107] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193.
    (A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements)
    [108] G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94 (1991) 6081.
    (A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first-row atoms)
    [109] M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys.108 (1998) 4439.
    (Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold)
    [110] S.F. Boys, Proc. R. Soc. London, A 200 (1950) 542.
    (Electronic wavefunctions. I. A general method of calculation for
    stationary states of any molecular system)
    [111] E. B. Wilson, Phys. Rev. 45 (1934) 427.
    (Calculation of vibrational isotope effect in polyatomic molecules by a perturbation method)
    [112] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.

    下載圖示
    QR CODE