簡易檢索 / 詳目顯示

研究生: 林冠甫
Lin Guan Fu
論文名稱: 單負材料光子晶體光學性質之研究
Optical Properties of Photonic Crystals Containing Single-Negative Materials
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 46
中文關鍵詞: 光子晶體光子帶隙單負材料轉移矩陣法異質結構
英文關鍵詞: Photonic Crystals, Photonic Band Structure, Single Negative Materials, Transfer Matrix Method, Heterostructure
論文種類: 學術論文
相關次數: 點閱:205下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們研究了單負材料一維光子晶體的光學性質。首先,我們使用轉移矩陣法(TMM)研究一維單負材料磁性光子晶體的光子帶隙,此結構為(AB)N,其中介質A是MNG,介質B是ENG透過兩種models (Drude model和Lorentz model)加以研究能帶結構和透射率對於TE、TM Mode的結構,我們研究光子能隙消失條件。接下來,我們將結構改變為(BA)N(AB)N,研究在Lorentz model下單負材料異質結構多層體系的穿隧模式,我們發現M型穿隧模式。最後,我們使用結構為〖(ACB)〗^N的一維三元光子晶體,研究在Drude model下的光學特性,其中介質C為單負材料,我們發現三元光子晶體可得較寬光子能隙。

    In this thesis, we study the optical properties for the one-dimensional (1D) photonic crystals (PCs) containing the single-negative (SNG) materials. There are three topic to be studied. In the first topic, we use transfer matrix method (TMM) to investigate of photonic band structure (PBS) and transmittance characteristics of 1D magnetic photonic crystal, (AB)N, where A is mu-negative (MNG) material and B is epsilon-negative (ENG) material. The permeability function of the MNG material is modeled by the Drude model and the Lorentz model as well. The condition of band gap vanishing is explored. In the second topic, we consider the photonic crystal heterostructure, (BA)N(AB)N, in which ENG and MNG materials are defined by the Lorentz model.In the third topic, we compare the PBS structures between the ternary PC of〖(ACB)〗^Nand the binary PCof 〖(AB)〗^N. The effect of layer C on the PBS will be numerically illustrated.

    摘要......................................................i Abstract.................................................ii 致謝.....................................................iii 目錄......................................................iv 圖目錄....................................................vi 第一章 導論................................................1 1-1 光子晶體的歷史與簡介.................................1 1-2 研究動機-光子能隙...................................3 1-3 論文概述...........................................3 第二章 一維單負材料磁性光子晶體之光子帶隙之研究...................4 2-1 導論..............................................4 2-2 基本方程...........................................5 2-3 數值結果與討論......................................7 2-3-1 Drude model................................7 2-3-2 Lorentz model.............................15 2-4 結論.............................................24 第三章 在Lorentz model下單負材料異質結構多層體系之穿隧模式......25 3-1 導論.............................................25 3-2 基本方程..........................................26 3-3 數值結果與討論.....................................27 3-4 結論.............................................31 第四章 由單負材料所組成的一維三元光子晶體之光學特性...............33 4-1 導論.............................................33 4-2 基本方程..........................................34 4-3 數值結果與討論.....................................35 4-4 結論.............................................43 第五章 結論...............................................44 Reference...............................................45

    1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton
    University Press, Princeton, NJ, 1995).
    4. V. P. Bykov, "Spontaneous emission in a periodic structure." Sov. Phys. JETP 35, 269-273 (1972)
    5. V. P. Bykov, "Spontaneous emission from a medium with a band spectrum." Sov. J. Quant. Electron. 4, 861-871 (1975)
    6. Chii-Chang Chen Pi-Gang Luan, Photonic Crystals. Wu-Nan culture enterprise (2005).
    7. Yablonovitch, Gritter, Leung, Phys Rev Lett 67 (17) 2295-2298 (1991)
    8. Krauss TF, DeLaRue RM, Brand S "Two-dimensional photonic-bandgap structures operating at near infrared wavelengths" NATURE vol. 383 pp. 699-702 (1996)
    9. V.G. Veselago, The electrodynamics of substances with simultaneously negative
    values of ε and μ, Sov. Phys. Usp. 10 (1968) 509–514.
    10. D.R. Smith, N. Kroll, Negative refractive index in left-handed materials, Phys.
    Rev. Lett. 85 (2000) 2933–2936.
    11. R.W. Ziolkowski, E. Heyman, Wave propagation in media having negative permittivity and permeability, Phys. Rev. E 64 (2001) 56625–56715; R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001) 77–79.
    12. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000) 3966–3969
    13. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001) 77.
    14. T. Tang, W. Liu, X. Gao, X. He, J. Yang, Band gaps and nonlinear defect modes in one-dimensional photonic crystals with anisotropic single-negative metamaterials, Opt. Laser Technol. 43 (2011) 1016–1019.
    15. T. Tang, F. Chen, B. Sun, Tunneling modes in photonic crystals with anisotropic single-negative metamaterials, Opt. Laser Technol. 43 (2011) 237–241.
    16. J.B. Pendry, A chiral route to negative refraction, in: Progress in Electromagnetics Research Symposium, Hangzhou, China, 2005, p. 23.
    17. K.-Y. Kim, B. Lee, Complete tunneling of light through impedance mismatched barrier layers, Phys. Rev. A 77 (2008) 023822.
    18. A. Alu, N. Engheta, Guided modes in a waveguide filled with a pair of singlenegative (SNG), double-negative (DNG), and/or double-positive (DPS) layers, IEEE Trans. Microw. Theory Tech. 52 (2004) 199.
    19. M.K. Karkkainen, Numerical study of wave propagation in uniaxially anisotropic Lorentzian backward-wave slabs, Phys. Rev. E 68 (2003), 026602.1–6.
    20. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, IEEE-Wiley Press, Piscataway, NJ, 2006.
    21. S.K. Awasthi, U. Malaviya, S.P. Ojha, J. Opt. Soc. Am. B 23, 2566 (2006)

    下載圖示
    QR CODE