Author: |
林偉杰 Lin, Wei-Jie |
---|---|
Thesis Title: |
二硫化鉬經過飛秒雷射退火之缺陷優化研究 A study on defect optimization of molybdenum disulfide through femtosecond laser annealing |
Advisor: |
楊承山
Yang, Chan-Shan |
Committee: |
楊承山
Yang, Chan-Shan 陳政營 Chen, Cheng-Ying 蔡孟霖 Tsai, Meng-Lin |
Approval Date: | 2024/10/28 |
Degree: |
碩士 Master |
Department: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
Thesis Publication Year: | 2024 |
Academic Year: | 113 |
Language: | 中文 |
Number of pages: | 41 |
Keywords (in Chinese): | 飛秒脈衝雷射 、雷射退火 、過渡金屬二硫化合物 、光致發光 、缺陷優化 |
Keywords (in English): | Femtosecond pulse laser, Laser annealing, Transition metal dichalcogenides, Photoluminescence, Defect optimization |
Research Methods: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401964 |
Thesis Type: | Academic thesis/ dissertation |
Reference times: | Clicks: 38 Downloads: 0 |
Share: |
School Collection Retrieve National Library Collection Retrieve Error Report |
二維材料現在為半導體開發和相關技術開啟了新的方向和可能性。更多的二維材料種類被發現以及製造後,過渡金屬二硫化合物( Transition Metal Dichalcogenide, TMD) 被認為是最有可能應用於積體電路的材料。在經過對於TMD的探索後,我們選擇二硫化鉬 (Molybdenum Disulfide, MoS2) 作為材料,並利用氣相沉積法 ( Chemical Vapor Deposition, CVD ) 生長在有氧化層的矽 ( Silicon, Si ) 基板上,兩層硫原子平面之間夾著一層鉬原子平面,這構成了單層二硫化鉬平面,而在SiO2/Si基板與MoS2單層之間是以微弱的凡德瓦力(Van der Waals)相連,但是MoS2有其區域性在同一塊基板上長的MoS2可能結晶或是發光能力會不一樣。所以我們利用飛秒雷射(Femtosecond Laser)聚焦在同一基板不同區域的MoS2表面或體積上,利用高能量密度的雷射使材料照射區域溫度升高並冷卻使使其重新結晶,進而優化具有缺陷的MoS2。這種方法可以在非常短的時間內完成,因此可以避免材料因長時間在熱效應的影響而引起的其他變化,也因為這個實驗有許多不同的參數可以做調整:可以調整功率的高低進而加工不同傷害閾值的材料;可以控制不同的加工範圍大小進而加工不同尺寸的樣品。本次實驗我們用光致發光(Photoluminescence, PL)及拉曼(Raman)作為檢測系統,在PL檢測過程中會用雷射照射到樣品上,使其電子躍遷到高能態。而當這些電子回到低能態時,會釋放出能量並且產生輻射,從而產生發光現象。然而拉曼的部分是因為拉曼光譜學可以檢測出其中的缺陷。這些缺陷會對應特定的拉曼光譜訊號,因此可以通過對拉曼頻譜進行分析,進而定性和定量分析材料中的缺陷,兩種方法讓我們確認經過雷射退火後的MoS2樣品是否會因為經過雷射退火再結晶後,優化缺陷且加強發光能力。
Two-dimensional materials are now opening up new directions and possibilities for semiconductor development and related technologies. With the discovery and manufacturing of more types of two-dimensional materials, TMD are considered the most promising materials for application in integrated circuits, particularly as channel materials in FET ( Field - Effect Transistor ), due to their well-suited bandgap size.Following exploration of transition metal dichalcogenides, we selected MoS2 as the material. We utilized CVD to grow MoS2 on SiO2/Si substrates. In this process, a monolayer of Mo atoms is sandwiched between two layers of sulfur atoms, forming a monolayer MoS2 plane. The connection between the Si substrate and the monolayer MoS2 is established through weak Van der Waals forces, but MoS2 may exhibit variations in crystallization or luminescence ability within the same substrate region.To address this, we employed femtosecond laser focusing on different regions of the MoS2 surface or volume on the same substrate. By irradiating the material with high-energy density laser, the temperature of the irradiated area increases and then cools, leading to re-crystallization and optimization of defective MoS2. This method can be completed in a very short time, thus avoiding other changes caused by prolonged exposure to heat. Furthermore, this experiment offers various adjustable parameters: the power level can be adjusted to process materials with different damage thresholds, and the processing range size can be controlled to process samples of different sizes.In this experiment, PL and Raman spectroscopy were utilized as detection systems. During the PL detection process, the sample is irradiated with a laser, causing electrons to transition to higher energy states. When these electrons return to lower energy states, they release energy and produce radiation, resulting in luminescence. Meanwhile, Raman spectroscopy detects defects within the material. These defects correspond to specific Raman spectral signals, enabling qualitative and quantitative analysis of defects in the material. Both methods allow us to confirm whether the MoS2 samples subjected to laser annealing optimize their defects and enhance their luminescence ability through re-crystallization.
Chénais, Sébastien, and Sebastien Forget. "Recent advances in solid‐state organic lasers." Polymer International 61.3 (2012): 390-406.
Garasz, K., et al. "The Effect of Process Parameters in Femtosecond Laser Micromachining." Bulgarian Journal of Physics 43.2 (2016): 110-120.
Lin, Zhenyuan, and Minghui Hong. "Femtosecond laser precision engineering: from micron, submicron, to nanoscale." Ultrafast Science (2021): 02-03.
Ameer-Beg, S., et al. "Femtosecond laser microstructuring of materials." Applied surface science 127 (1998): 875-880.
OFENG LIGHT METAL CO.,LTD _ Service _ From 0 to full hard tempers _ Annealing.
Molecular expressions _ Science, Optics & You _ Theodore Harold Maiman
熱加工企業名錄_鋼材退火的經典詮釋(粗晶退火)
Coherent _ Newsroom _ Blog _ Lasers in Display Fabrication : Excimer Laser Annealing _ Coherent excimer lasers perform a key process that enables brighter, higher-resolution, more energy-efficient displays.
Huet, Karim, et al. "Doping of semiconductor devices by Laser Thermal Annealing." Materials Science in Semiconductor Processing 62 (2017): 92-102.
PVTECH _ News _ Study suggests new route for perovskite solar cells (2021).
Liu, Ran, Jonathon Duay, and Sang Bok Lee. "Heterogeneous nanostructured electrode materials for electrochemical energy storage." Chemical communications 47.5 (2011): 1384-1404.
McConney, Michael E., et al. "Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures on stretchable polymer surfaces." Journal of Materials Research 31.7 (2016): 967-974.
Kwon, Hyuk-Jun, et al. "Evaluation of pulsed laser annealing for flexible multilayer MoS2 transistors." Applied Physics Letters 106.11 (2015): 113111.
Li, Xiao, and Hongwei Zhu. "Two-dimensional MoS2: Properties, preparation, and applications." Journal of Materiomics 1.1 (2015): 33-44.
Akinwande, Deji, Nicholas Petrone, and James Hone. "Two-dimensional flexible nanoelectronics." Nature communications 5.1 (2014): 5678.
Okinawa Institute of Science and Technology _ Schematic of a 2D MoS2 layer.
Nan, Haiyan, et al. "Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding." ACS nano 8.6 (2014): 5738-5745.
Zhou, Wu, et al. "Intrinsic structural defects in monolayer molybdenum disulfide." Nano letters 13.6 (2013): 2615-2622.
Lin, Zhong, et al. "Defect engineering of two-dimensional transition metal dichalcogenides." 2D Materials 3.2 (2016): 022002.
Hong, Jinhua, et al. "Exploring atomic defects in molybdenum disulphide monolayers." Nature communications 6.1 (2015): 6293.
Hong, Jinhua, et al. "Atomic defects in two‐dimensional materials: From single‐atom spectroscopy to functionalities in opto‐/electronics, nanomagnetism, and catalysis." Advanced Materials 29.14 (2017): 1606434.
Sahoo, Satyaprakash, et al. "Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2." The Journal of Physical Chemistry C 117.17 (2013): 9042-9047.
Li, Hong, et al. "From bulk to monolayer MoS2: evolution of Raman scattering." Advanced Functional Materials 22.7 (2012): 1385-1390.
Chen, J. M., and C. S. Wang. "Second order Raman spectrum of MoS2." Solid State Communications 14.9 (1974): 857-860.
Wikipedia _ Raman spectroscopy _ Enegy-level diagram showing the states involved in Raman spectra .
Jia-Min Shieh, et al. "光激發螢光量測的原理, 架構及應用." 奈米通訊, 第十二卷第二期 (2005): 28-31 .
Amani, Matin, et al. "Near-unity photoluminescence quantum yield in MoS2." Science 350.6264 (2015): 1065-1068.
Eda, Goki, et al. "Photoluminescence from chemically exfoliated MoS2." Nano letters 11.12 (2011): 5111-5116.
HORIBA Scientific _ Applications _ energy _ Macro photoluminescence and Electroluminescence _ Typical photoluminescence , where blue photons are absorbed and red photons are emitted.
Tsunekawa, S., T. Fukuda, and A. Kasuya. "Blue shift in ultraviolet absorption spectra of monodisperse CeO2− x nanoparticles." Journal of Applied Physics 87.3 (2000): 1318-1321.
Bera, Achintya, D. V. S. Muthu, and A. K. Sood. "Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects." Journal of Raman Spectroscopy 49.1 (2018): 100-105.
Wang, Haining, Changjian Zhang, and Farhan Rana. "Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2." Nano letters 15.1 (2015): 339-345.
Wang, Haining, Changjian Zhang, and Farhan Rana. "Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2." Nano letters 15.12 (2015): 8204-8210.
Zhang, Yu, et al. "Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen." Journal of the American Chemical Society 128.41 (2006): 13396-13401.
Becher, Malte Jonas Marius Julian, et al. "Ultrashort‐Pulsed‐Laser Annealing of Amorphous Atomic‐Layer‐Deposited MoS2 Films." Advanced Engineering Materials 25.21 (2023): 2300677.
Di Russo, Enrico, et al. "Synthesis of Large-Area Crystalline MoS2 by Sputter Deposition and Pulsed Laser Annealing." ACS Applied Electronic Materials 5.5 (2023): 2862-2875.
Kodas, Toivo T., and Mark J. Hampden-Smith. The chemistry of metal CVD. John Wiley & Sons, (2008): 04-19.
Cassell, Alan M., et al. "Large scale CVD synthesis of single-walled carbon nanotubes." The Journal of Physical Chemistry B 103.31 (1999): 6484-6492.
Dinata, Agil Aditya, et al. "A Review Chemical Vapor Deposition: Process And Application." (2018): 06-07.
Li, Songyu, et al. "Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping." ACS applied materials & interfaces 11.12 (2019): 11636-11644.
Liang, Bor-Wei, et al. "Self-powered broadband photodetection enabled by facile CVD-grown MoS2/GaN heterostructures." Nanoscale 15.45 (2023): 18233-18240.
Brabec, Thomas, et al. "Kerr lens mode locking." Optics letters 17.18 (1992): 1292-1294.
Strickland, Donna, and Gerard Mourou. "Compression of amplified chirped optical pulses." Optics communications 56.3 (1985): 219-221.
Eckardt, Robert C., et al. "Optical parametric oscillator frequency tuning and control." JOSA B 8.3 (1991): 646-667.
Gao, Jian, et al. "Aging of transition metal dichalcogenide monolayers." ACS nano 10.2 (2016): 2628-2635.
Kaplan, D., et al. "Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition." Journal of Applied Physics 119.21 (2016): 214301.
Chen, J. M., and C. S. Wang. "Second order Raman spectrum of MoS2." Solid State Communications 14.9 (1974): 857-860.
Oh, Hye Min, et al. "Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy." ACS nano 10.5 (2016): 5230-5236.
Cam, Hoang Ngoc, Nguyen Thanh Phuc, and Vladimir A. Osipov. "Symmetry-dependent exciton-exciton interaction and intervalley biexciton in monolayer transition metal dichalcogenides." npj 2D Materials and Applications 6.1 (2022): 22.
Salehzadeh, O., et al. "Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices." Nano letters 14.7 (2014): 4125-4130.
Pandey, Juhi, and Ajay Soni. "Unraveling biexciton and excitonic excited states from defect bound states in monolayer MoS2." Applied Surface Science 463 (2019): 52-57.
Christopher, Jason W., Bennett B. Goldberg, and Anna K. Swan. "Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra." Scientific reports 7.1 (2017): 14062.
Kim, Kwiseon, and Alex Zunger. "Spatial correlations in GaInAsN alloys and their effects on band-gap enhancement and electron localization." Physical Review Letters 86.12 (2001): 2609.
Li, Hong, et al. "From bulk to monolayer MoS2: evolution of Raman scattering." Advanced Functional Materials 22.7 (2012): 1385-1390.
Christopher, Jason W., Bennett B. Goldberg, and Anna K. Swan. "Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra." Scientific reports 7.1 (2017): 14062.
Onga, Masaru, et al. "Exciton Hall effect in monolayer MoS2." Nature materials 16.12 (2017): 1193-1197.
Sun, Dezheng, et al. "Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide." Nano letters 14.10 (2014): 5625-5629.
Xu, Chunxiang, et al. "Photoluminescent blue-shift of organic molecules in nanometer pores." Nanotechnology 13.1 (2002): 47.
Kim, Honghyuk. Novel III-V Active Regions by Metal-Organic Vapor Phase Epitaxy for Semiconductor Laser Diodes. The University of Wisconsin-Madison, (2020): 31-34.
Weyers, Markus, Michio Sato Michio Sato, and Hiroaki Ando Hiroaki Ando. "Red shift of photoluminescence and absorption in dilute GaAsN alloy layers." Japanese Journal of Applied Physics 31.7A (1992): L853.
Science Questions with Surprising Answers_ Have astronomers ever observed a violet shift like they have blue shifts and red shifts?_ Christopher S. Baird
Kesarkar, Rohan, et al. "Microwave assistance for high yielding monodispersed A. indica gold nanoparticles for therapeutic applications." Int. J. Phar. Sci. Rev. Res 67 (2014): 367-37.
Ding, Hui, et al. "Solvent‐controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths." Small 14.22 (2018): 1800612.
Zhang, Jing, et al. "Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes." ACS nano 8.6 (2014): 6024-6030.
McCreary, Kathleen M., et al. "A-and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers." Apl Materials 6.11 (2018): 111106.
Pei, Jiajie, et al. "Exciton and trion dynamics in bilayer MoS2." Small 11.48 (2015): 6384-6390.
Li, Ziwei, et al. "Active light control of the MoS2 monolayer exciton binding energy." ACS nano 9.10 (2015): 10158-10164.
Paradisanos, I., et al. "Intense femtosecond photoexcitation of bulk and monolayer MoS2." Applied Physics Letters 105.4 (2014): 041108.
Simbulan, Kristan Bryan, et al. "Twisted light-enhanced photovoltaic effect." ACS nano 15.9 (2021): 14822-14829.
Kaplan, D., et al. "Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition." Journal of Applied Physics 119.21 (2016): 214301.