研究生: |
王瓊誼 Wang, Chiung-I |
---|---|
論文名稱: |
不同晶面的銀奈米晶體於析氫反應之光催化活性 Facet-Dependent Photoreactivity of Plasmonic Silver Nanocrystals for Hydrogen Evolution Reaction |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 銀奈米晶體 、光電催化 、析氫反應 |
英文關鍵詞: | silver nanocrystals, photoelectrocatalysis, hydrogen evolution reaction |
DOI URL: | https://doi.org/10.6345/NTNU202204521 |
論文種類: | 學術論文 |
相關次數: | 點閱:252 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用波長450 nm、532 nm以及808 nm之雷射,照射不同晶面的銀奈米晶體,探討其應用於析氫反應之光電催化活性。由於侷域化表面電漿共振現象,銀奈米十四面體在波長450 nm之雷射的照射下,其析氫效率有所提升,電流密度值從原本的-20.23 mA/cm2增加至-20.50 mA/cm2,產生了0.27 mA/cm2的光電流密度。而在犧牲試劑的作用之下,光電流密度則可達到0.403 mA/cm2。
在不同形狀之銀奈米晶體的光電催化效率探討中,以銀奈米八面體的表現最佳。相較於銀奈米立方體與銀奈米十四面體的光電流密度值(分別為7.5×〖10〗^(-6)和1.5×〖10〗^(-5) mA/cm2·mW),銀奈米八面體具有最高的光電流密度(6.8×〖10〗^(-5) mA/cm2·mW)。這是由於比起[100]晶面,氫原子較易吸附在銀奈米晶體的[111]晶面。所以,於[111]晶面上,氫分子較容易被生成出來,進而造成電流密度的提升。因此,[111]晶面的銀奈米八面體,應用於析氫反應,具有出色的光電催化效率。
The facet-dependent photoelectrocatalytic activities of silver nanocrystals on carbon fiber paper (CFP) were investigated for hydrogen evolution reaction (HER) under the laser irradiation at wavelengths of 450, 532 and 808 nm, respectively. Under the laser irradiation at wavelength of 450 nm, the hydrogen generation of silver cuboctahedra was improved due to localized surface plasmon resonance (LSPR), that the current density was shift from -20.23 to -20.50 mA/cm2 and the photocurrent density was reached to 0.27 mA/cm2. Furthermore, photocurrent density of silver cuboctahedra was increased from 0.270 to 0.403 mA/cm2 by the assist of hole scavenger. Among different shapes of silver nanocrystals, silver octahedra exhibited the best performance for the photoelectrocatalysis. Compared with the photocurrent density of silver nanocubes and silver cuboctahedra (7.5×〖10〗^(-6) and 1.5×〖10〗^(-5) mA/cm2·mW respectively), the photocurrent density of silver octahedral (6.8×〖10〗^(-5) mA/cm2·mW) was highest. The reason can be ascribed that the adsorption of hydrogen atom on the planar [111] surface of silver nanocrystals is easier than [100]. Therefore, hydrogen can be produced more effectively on the [111] surface to result in the increase of current density. Overall, the silver octahedra with the [111] surface showed the high efficiency for photoelectrocatalysis in HER application.
1. Xiangang Luo and Teruya Ishihara. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 2004, 84, 4780-4782.
2. George M. Whitesides and Bartosz Grzybowski. Self-Assembly at All Scales. Science. 2002, 295, 2418-2421.
3. B. D. Yao, Y.F. Chan and N. Wang. Formation of ZnO Nanostructures by a Simple Way of Thermal Evaporation. Appl. Phys. Lett. 2002, 81, 757-759.
4. Q. Ye, P. Y. Liu, Z.F. Tang and L. Zhai. Hydrophilic Properties of Nano-TiO2 Thin Films Deposited by RF Magnetron Sputtering. Vacuum 2007, 81, 627-631.
5. T. Sharda, M. M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo and M. Umeno. Structural and Optical Properties of Diamond and Nano-diamond Films Grown by Microwave Plasma Chemical Vapor Deposition. Diamond and Related Materials 2001, 10, 561-567.
6. Kuei-Feng Hsu, Sun-Yuan Tsay and Bing-Joe Hwang. Synthesis and Characterization of Nano-sized LiFePO4 Cathode Materials Prepared by a Citric Acid-based Sol-gel Route. J. Mater. Chem. 2004, 14, 2690-2695.
7. Lai Yan, Ranbo Yu, Jun Chen and Xianran Xing. Template-free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the
Morphology Evolution. Crystal Growth & Design 2008, 8, 1474-1477.
8. Ernesto Reverchon. Supercritical Antisolvent Precipitation of Micro- and Nano- Particles. Journal of Supercritical Fluids 1999, 15, 1-21.
9. P. Davide Cozzoli, Andreas Kornowski and Horst Weller . Colloidal Synthesis of Organic-Capped ZnO Nanocrystals via a Sequential Reduction-Oxidation
Reaction. J. Phys. Chem. B 2005, 109, 2638-2644.
10. Wanquan Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen and Chin-Yih Hong . Preparation and Properties of Superparamagnetic Nanoparticles with Narrow Size Distribution and Biocompatible. Journal of Magnetism and Magnetic Materials 2004, 283, 210-214.
11. D. J. Norris and M. G. Bawendi. Measurement and Assignment of the Size-dependent Optical Spectrum in CdSe Quantum Dots. Physical Review B 1996, 53, 16338-16346.
12. Jonathan A. Scholl, Aitzol García-Etxarri, Ai Leen Koh and Jennifer A. Dionne. Observation of Quantum Tunneling between Two Plasmonic Nanoparticles. Nano Lett. 2013, 13, 564-569.
13. Lifeng Cui, Feng Huang, Mutong Niu, Lingwei Zeng, Ju Xu and Yuansheng Wang. A Visible Light Active Photocatalyst: Nano-composite with Fe-doped Anatase TiO2 Nanoparticles Coupling with TiO2(B) Nanobelts. Journal of
Molecular Catalysis A: Chemical 2010, 326, 1-7.
14. Challa S.S.R. Kumar and Faruq Mohammad. Magnetic Nanomaterials for Hyperthermia-based Therapy and Controlled Drug Delivery. Advanced Drug Delivery Reviews 2011, 63, 789-808.
15. Lule Beqa, Zhen Fan, Anant Kumar Singh, Dulal Senapati and Paresh Chandra Ray. Gold Nano-Popcorn Attached SWCNT Hybrid Nanomaterial ofr Targeted
Diagnosis and Photothermal Therapy of Human Breast Cancer Cells. ACS Appl. Mater. Interfaces 2011, 3, 3316-3324.
16. Wenzhen Li, Weigiang Zhou, Huanqiao Li, Zhenhua Zhou, Bing Zhou, Gongquan Sun and Qin Xin. Nano-structured Pt-Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell. Electrochimica Acta 2004, 49, 1045-1055.
17. Seung Hwan Ko, Daeho Lee, Hyun Wook Kang, Koo Hyun Nam, Joon Yeob Yeo, Suk Joon Hong, Costas P. Grigoropoulos and Hyung Jin Sung. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011, 11, 666-671.
18. Ping Li, Donald E. Miser, Shahryar Rabiei, Ramkuber T. Yadav and Mohammad R. Hajaligol. The Removal of Carbon Monoxide by Iron Oxide Nanoparticles. Applied Catalysis B: Environmental 2003, 43, 151-162.
19. Abbas Afkhami, Mohammad Saber-Tehrani and Hasan Bagheri. Simultaneous Removal of Heavy-metal Ions in Wastewater Samples Using Nano-alumina Modified with 2,4-Dinitrophenylhydrazine. Journal of Hazardous Materials
2010, 181, 836-844.
20. Anatoly V. Zayats, Igor I. Smolyaninov and Alexei A. Maradudin. Nano-optics of Surface Plasmon Polaritons. Physics Reports 2005, 408, 131-314.
21. Chun-Sheng Zhang, Qing-Qing Ni, Shao-Yun Fu and Ken Kurashiki. Electromagnetic Interference Shielding Effect of Nanocomposites with Carbon Nanotube and Shape Memory Polymer. Composites Science and Technology
2007, 67, 2973-2980.
22. Suljo Linic, Umar Aslam, Calvin Boerigter and Matthew Morabito. Photochemical Transformations on Plasmonic Metal Nanoparticles. Nature Materials. 2015, 14, 567-576.
23. Koichi Awazu, Makoto Fujimaki, Carsten Rockstuhl, Junji Tominaga, Hirotaka Murakami, Yoshimichi Ohki, Naoya Yoshida and Toshiya Watanabe. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. J. Am. Chem. Soc. 2008, 130, 1676-1680.
24. Phillip Christopher, David B. Ingram and Suljo Linic. Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons. J. Phys.
Chem. C. 2010, 114, 9173-9177.
25. Huaiyong Zhu, Xuebin Ke, Xuzhuang Yang, Sarina Sarina and Hongwei Liu. Reduction of Nitroaromatic Compounds on Supported Gold Nanoparticles by Visible and Ultraviolet Light. Angew. Chem. Int. Ed. 2010, 49, 9657-9661.
26. Jiun-Jen Chen, Jeffrey C.S. Wu, Pin Chieh Wu and Din Ping Tsai. Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting. J. Phys. Chem. C. 2011, 115, 210-216.
27. Yi Shi, Jiong Wang, Chen Wang, Ting-Ting Zhai, Wen-Jing Bao, Jing-Juan Xu and Xing-Hua Xia. Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets. J. Am. Chem. Soc. 2015, 137, 7365-7370.
28. Jian Pan, Gang Liu, Gao Qing (Max) Lu and Hui-Ming Cheng. On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed. 2011, 50, 2133-2137.
29. Entian Cui and Gongxuan Lu. Modulating Photogenerated Electron Transfer and Hydrogen Production Rate by Contorlling Surface Potential Energy on a Selectively Exposed Pt Facet on Pt/TiO2 for Enhancing Hydrogen Production. J. Phys. Chem. C. 2013, 117, 26415-26425.
30. Qingfeng Zhang and Hui Wang. Facet-Dependent Catalytic Activities of Au Nanoparticles Enclosed by High-Index Facets. ACS Catal. 2014, 4, 4027-4033.
31. Andrea Tao, Prasert Sinsermsuksakul and Peidong Yang. Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angew. Chem. Int. Ed. 2006, 45, 4597-4601.
32. F. Fievet, J.P. Lanier, B. Blin, B. Beaudoin and M. Figlarz. Homogeneous and Heterogeneous Nucleations in the Polyol Process for the Preparation of Micron and Submicron Size Metal Particles. Solid State Ionics. 1989, 32-33 Part 1, 198-205.
33. Yugang Sun and Younan Xia. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science. 2002, 298, 2176-2179.
34. Andrea Tao, Prasert Sinsermsuksakul and Peidong Yang. Tunable Plasmonic Lattices of Silver Nanocrystals. Nature Nanotechnology. 2007, 2, 435-440.
35. M.F. Juárez and E. Santos. Electronic Anisotropy at Vicinal Ag(11n) Surface: Energetic of Hydrogen Adsorption. J. Phys. Chem. C 2016, 120, 2109-2118.
36. 科技創意產業發展, 楊啟榮, 台灣師範大學機電科技研究所
http://www.ccda.org.tw/sing_up/CreativityManagement/HumanResources/003.ht
m