簡易檢索 / 詳目顯示

研究生: 張淑芝
Shu-Chih Chang
論文名稱: 阿拉伯芥之聚泛素基因UBQ10、UBQ11和UBQ14的基因表現及啟動子序列分析
Expression and promoter analyses of Arabidopsis polyubiquitin genes, UBQ10, UBQ11 and UBQ14
指導教授: 孫智雯
Sun, Chih-Wen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 49
中文關鍵詞: 聚泛素基因
論文種類: 學術論文
相關次數: 點閱:179下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泛素(ubiquitin)是一個由七十六個胺基酸所組成的蛋白質,它廣泛存在真核生物體內。近來的研究發現,阿拉伯芥中泛素主要由五個聚泛素基因所轉錄轉譯出,依其親緣特徵可分成兩群,UBQ3和UBQ4為一群,UBQ10/UBQ11/UBQ14為一群。因此本研究以阿拉伯芥之UBQ10/UBQ11/UBQ14為目標,研究其基因表現的調控機制。將UBQ10/UBQ11/UBQ14的上游序列,依序刪減後接上報導基因,分析報導基因的表現量得知UBQ10的啟動子(promoter)序列上有一正向調控區段(-2044至-1849)、UBQ11的啟動子序列有負向(-798至-577)以及正向(-577至-258)各一的調控區段,而UBQ14的啟動子序列上有一負向調控區段(-714到-636)。利用生物資訊工具調查此三基因的啟動子序列,結果發現三個保守序列(UPE1、UPE2和UPE3)。進一步比較這些基因在不同生長時期、不同溫度及光線處理的基因表現模式,得知UBQ11及UBQ14在低溫處理下會增加基因表現量,但UBQ14在UV-B及黑暗處理下影響會減少表現量。UBQ10表現則不受這些環境因子影響。

    Ubiquitin (Ub) is a conserved 76-amino acid protein among all eukaryotic organisms. According to previous genetic and molecular studies, the majority of cellular Ub molecules in Arabidopsis are encoded by five polyubiquitin genes. These five genes can be further divided into two subtypes based on the gene structures phylogenic analyses. In this study, we had focused on transcription regulation of the second subtype, UBQ10/UBQ11/UBQ14. The promoter deletion and transient analyses indicated that the positive regulatory regions representing locations between -2044 to -1849, -577 to -258, and -714 to -636 were defined on the UBQ10, UBQ11, UBQ14 promoter sequences, respectively. Besides that, a negative regulatory region (-798 to -577) was also defined on UBQ11 promoter sequence. The promoter sequences of these genes were furthered analyzed by MEME software, and the results indicated three conserved cis-acting elements ubiquitin promoter elements (UPEs). We also compared the expression patterns of UBQ10/UBQ11/UBQ14 during various developmental stages and under different temperatures and light treatments. The results showed that UBQ14 and UBQ11 had a higher expression in low temperature. Moreover, the transcription level of UBQ14 also decreased transcription level under UV-B and dark treatment. In contrast, UBQ10 expression remained constantly under various environmental treatments.

    序論 1 材料與方法 4 結果 14 討論 18 參考文獻 22 表格與圖片 27

    Amin J., Ananthan J., Voellmy R. (1988). Key features of heat shock regulatory elements. Molecular Cell Biollogy 8, 3761-3769.
    Bachmair A., Novatchkova M., Potuschak T., Eisenhaber F. (2001). Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends Plant Sciences 6, 463-470.
    Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper JW., Elledge SJ. (1996). Skp1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263-274.
    Barsoum J., Varshavsky A. (1985). Preferential localization of variant nucleosomes neatrh e 5'-end of the mouse dihydrofolate Reductase Gene. Journal of Biology Chemistry 260, 7688-7697.
    Bhattacharyya S., Pattanaik S., Maiti IB. (2003). Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PCISV) promoter-leader and the antisense orientation of PCISV ORF VII (p7R). Planta 218, 115-124.
    Callis J., Carpenter T., Sun CW., Vierstra R. (1995). Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139, 921-939.
    Callis J., Raasch J., Vierstra R.D. (1990). Ubiquitin extension proteins of Arabidopsis thaliana : structure, localization and expression of their promoters in transgenic tobacco. Journal of Biology Chemistry 265, 12486-12493.
    Chan CS., Guo L., Shih MC. (2001). Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Molecilar Biology 46, 131-141.
    Chang HY., Sun CW. (2009). Expression analyses of Arabidopsis polyubiquitin genes UBQ3 and UBQ4. Master thesis. National Taiwan Normal University.
    Chinnusamy V., Zhu JH., Zhu JK. (2007). Cold stress regulation of gene expression in plants. TRENDS in Plant Science 12, 1380-1385.
    Christensen A.H., Sharrok R.A., Quail P.H. (1992). Maize polyubiquitin genes : structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecilar Biology 18, 675-689.
    Daisuke H., Shu H., Yoshinori J., Nobuyuki Y., Shigehito T., Hideki T. (2007). The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Molecular Plant-Microbe Interactions 20, 72-81.
    Fenget S., Martinez C., Gusmaroli G., Wang Y., Zhou J., Wang F., Chen L., Yu L., Iglesias-Pedraz JM., Kircher S., Schafer E., Fu X., Fan LM., Deng XW. (2008).
    Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475-479.
    Finley D., Ozkaynak E., Varshavsky A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035-1046.
    Graciela C. (2005).The leader intron of Arabidopsis thaliana genes encoding cytochrome oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. Journal of Experimental Botany 56, 2563-2571.
    Hershko A., Leshinsky E., Ganoth D., Heller H. (1984). ATP-dependent degradation of ubiquitin-protein conjugates. Proceedings of the National Academy of Sciences 81, 1619-1623.
    Hochstrasser M. (1996). Ubiquitin-dependent protein degradation. Annual Review of Genetics 30, 405-439.
    Hoffman N.E., Ko K., Milkowski D., Pichersky E. (1991). Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecilar Biology 17, 1189-1201.
    Hofmann K., Bucher P. (1998). The PCI domain: a common theme in three multi-protein complexes. Trends in Biochemical Sciences 23, 204-205.
    Ibarra-Molero B., Makhatadze GI., Sanchez-Ruiz JM. ( 1999). Cold denaturation of ubiquitin. Biochimica et Biophysica Acta 1429, 384-390.
    Imaizumi T., Tran H.G., Swartz T.E., Briggs W.R., Kay S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306.
    Koken MH., Hoogerbrugge JW., Jasper D., Wit J., Willemsen R., Roest HP., Grootegoed JA., Hoeijmakers JH. (1996). Expression of the ubiquitin-conjugating
    DNA repair enzymes HHR6A and B suggests a role in spermatogenesis and chromatin modification. Developmental Biology 173, 119-132.
    Kim MJ., Kim H., Shin JS., Chung CH., Ohlrogge JB., Suh MC.(2006). Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5’-UTR intron. Molecular Genetics and Genomics 276, 351–368.
    Kyozaka J., Fujimoto H., Izawa T., Shimamoto K. (1991). Anaerobic induction and tissue- specific expression of maize Adh1 promoter in transgenic rice plants and their progeny. Molecular Genetics and Genomics 228, 40-48.
    Lai Z., Ma W., Han B., Liang L., Zhang Y., Hong G., Xue Y. (2002). An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Molecular Biology 50, 29-42.
    Ma JF., Goto S., Tamai K., Ichii M. (2001). Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127, 1773-1780.
    Moon J., Parry G., Estelle M. (2004). The Ubiquitin-Proteasome Pathway and Plant Development. The Plant Cell 16, 3181-3195.
    Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.
    Ni W., Xie D.,Hobbie L., Feng B.,Zhao D., Akkara J., Ma H. (2004). Regulation of Flower Development in Arabidopsis by SCF Complexes. Plant Physiology 134, 1574-1585.
    Norris SR., Meyer SE., Callis J. (1993). The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Molecular Biology 21, 895-906.
    Pagano M. (1997). Cell cycle regulation by the ubiquitin pathway. FASEB Journal 11, 1067-1075.
    Patton EE., Willems AR., Tyers M. (1998). Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends in genet 14, 236-243.
    Philip Z., Matthias HH., Hennig L., Gruissem W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology 136, 2621-2632.
    Pozo JC., Timpte C., Tan S.,Callis J., Estelle M. (1998). The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science. 280, 1760-1763.
    Rechesteiner M. (1987). Natural substrates of the ubiquitin proteolytic pathway. Cell 66, 615-618.
    Rose AB., Elfersi T., Parra G., Korf I. (2008). Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. The Plant Cell 20, 543-551.
    Schwechheimer C., Serino G., Callis J., Crosby WL., Lyapina S., Deshaies RJ., Gray WM., Estelle M., Deng XW. (2001). Interactions of the COP9 signalosome with
    the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292, 1379- 1382.
    Shanklin J., Jabben M., Vierstra RD. (1987). Red light-induced formation of ubiquitin-phytochrome conjugates: identification of possible intermediates of phytochrome degradation. The proceedings of the national academy of sciences 84, 359-363.
    Singh MB., Xu H. Bhalla PL., Zhang Z., Swoboda I., Russell SD. (2002). Developmental expression of polyubiquitin genes and distribution of ubiquitinated proteins in generative and sperm cells. Sex Plant Reproduction 14, 325-329.
    Sivamani E., Qu R. (2006). Expression enhancement of a rice polyubiquitin gene promoter. Plant Molecular Biology 60, 225-239.
    Sun CW., Callis J. (1997). Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant Journal 11, 1017-1027.
    Sun CW., Griffen S., Callis J. (1997). A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes. Plant Molecular Biology 34, 745-758.
    Tornero P., Merritt P., Sadanandom A., Shirasu K., Innes RW., Dangl JL. (2002). RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. The Plant Cell. 14, 1005-1015.
    Wang J., Jiang J., Oard J. (2000). Structure, expression and promoter activity of two polyubiquitin genes from rice (Oryza satvia L.). Plant Science 156, 201-211.
    Wang X., Kong H., Ma H. (2009). F-box proteins regulate ethylene signaling and more. Genes & Development 23, 391-396.
    WeakeVM., Workman JL. (2008). Histone ubiquitination: triggering gene activity. Molecular Cell 29, 653-663.
    Yanagisawa S. (2000). Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. The Plant Journal 21, 281-288.
    Yin XJ., Volk S., Ljung K., Mehlmer N., Dolezal K., Ditengou F., Hanano S., Davis SJ., Schmelzer E., Sandberg G., Teige M., Palme K., Pickart C., Bachmair A.
    (2007). Ubiquitin lysine 63 chain-forming ligases regulate apical dominance in Arabidopsis. The Plant Cell 19, 1898-1911.
    Zhang YY., Xie Q. (2007). Ubiquitination in abscisic acid-related pathway. Journal of Integrative Plant Biology 49, 87-93.

    下載圖示
    QR CODE