研究生: |
黃信翰 Huang Shin Ham |
---|---|
論文名稱: |
先進栓塞材料開發與製程整合 Advanced Contact Material Development and Intergration |
指導教授: |
李敏鴻
Lee, Min-Hung 鍾朝安 Jong, Chao-An |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 栓塞 、鎢 、擴散阻障 |
英文關鍵詞: | Plug, Material Development, Contact chain |
論文種類: | 學術論文 |
相關次數: | 點閱:218 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在90年代末期,內連結導線部分應用逐漸被銅取代,但是垂直連結的栓塞材料仍就是鎢,主要考量鎢的熱與化學穩定性佳。但在逐漸微縮的元件要求下,傳統以CVD方式沉積的栓塞因阻值增高,衍生的寄生電阻串聯效應,將會嚴重影響元件特性。
在本研究中,我們比較以不同方式(PVD & ALD)製備TiN當作擴散阻絕層(Diffusion Barryier Layer),鎢(W)當垂直栓塞導線。TiN是傳統鎢栓塞使用的擴散阻障層材料。而ALD製程是目前製作極薄、均勻薄膜的理想製程。本研究結合電漿結構改質與雜質摻雜的方式,試圖改變ALD-TiN在製程後的結構,以提高其高溫阻絕擴散能力,並透過Ag/n+ p-Si結構的二極體來觀察高溫漏電流行為,評斷阻絕能力。
整合方面,本實驗以 200nm x 200nm 的Contact Plug Size為主,水平導線採用(Al-Si-Cu),製作接觸鏈(Contact chain)結構,探討不同製程下的垂直栓塞材料(W)之電性,並建立一套栓塞電阻量測結構製程流程(Process Flow)。藉由實驗的結果,探討如何降低整體鎢栓塞電阻值的方法,以及選用不同方式的擴散阻絕層製程以及改善方式,一方面減少填充時的孔洞,另一方面提升擴散阻絕能力,提供給下一世代栓塞製程延伸的選擇。 關鍵字:栓塞、鎢、擴散阻障
Abstract
In 1990s, Cu has lower electrical resistance and EM resist performances than Al became the new interconnect metal. Cu was also regarded as the candidate of contact material in replace of tungsten. However, high diffusivity of Cu through thinner diffusion barrier will be the major concern.
In plug process improvement, we modified the standard recipe of CVD W process combined with the ALD-TiN material to enlarge the process window. Not only the void-free gap fill was achieved in 100nm plug structure but the plug resistance was effectively reduced with following forming gas annealing. In this study, we optimized TiN microstructure and N/Ti composition ratio using N plasma bombardment to enhance the diffusion retardation capability. An Ag/n+p-Si diode was fabricated to detect the leakage current/barrier performance of modified TiN film.
A contact chain with 200m x 200m plug size was produced for plug resistance study. Different plug barrier material and modified CVD W process were fabricated for comparison. An integration process flow and capability for contact plug study was expected to be built-up in this study.
Key word: Plug、Material Development、Contact chain
[1] C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.M. Raymond, L.H. Gale, Surf. Interface Anal. 3 (1981).
[2] G. Ramanath, J.E. Greene, J.R.A. Carlsson, L.H. Allen, V.C. Hornback, D.J. Allman, J. Appl. Phys. 85 (1999).
[3] J. Schuhmacher, A. Martina, A. Satta, K. Maexa, Materials for Information Technology: Chapter 4 Atomic-layer Deposited Barrier and Seed Layers for Interconnects, Springer, London, ISBN: 978-1-85233-941-8, , pp. 39–50. (2005)
[4] Sang Bom Kang, Kwang Jin Moon, Hee Sook Park, Myoung Bum Lee, Gil Weyun Choi, Young Wook Park, Sang In Lee, Moon Yong Lee, in: Interconnect Technology Conference, 2000. Proceedings of the IEEE 2000 International, vol. 5–7, June (2000)
[5] Hee Sook Park, Kwang Jin Moon, Myoung Bum Lee, Sang Bom Kang, Gil Heyun Choi, Young Wook Park, Joo Tae Moon, in: VLSI Technology, Systems, and Applications, 2001, Proceedings of Technical Papers. 2001 International Symposium on, vol. 18–20, pp. 93–96 ()2001
[6] J.Y. Dai, S.K. Loh, S.F. Tee, C.L. Tay, S. Ansari, Eddie Er, S. Redkar, in: IPFA 2001. Proceedings of the 2001 8th International Symposium, vol. 9–13, (2001)
[7] Y. Tezuka, N. Kitano, N. Nakano, J. Electrochem. Soc. 142, pp. 3569. (1995)
[8] H.L. Chang, F.L. Juang, C.T. Kuo, Japan Journal of Applied Physics, 41 (2002).
[9] H.T. Shih, K.E. Violette, M.C. Ozturk, Proc. Mater. Res. Soc. Syrup. 387 (1995).
[10] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, pp. 19 (1994)
[11] T. Ohba, in Rana, R.V. Joshi, I. Ohdomari (eds.), Multilevel Metallization Trends in Japan (Mater. Res. Soc., Murray Hill, NJ and Tokyo, Japan, pp. 25 (1992)
[12] M. Sekine, N. Itoh, T. Akimoto, T. Shinmura, D.T.C. Huo, Y. Kakuhara, K. Kajiyana, Y. Yamada, K. Yamazaki, Y. Murao, Extended Abstr. of the 1992 Int. Conf. on Solid State Devices and Mater., Tsukuba, pp. 184 (1992)
[13] G. Sandhu, S. Meikle, S. Kim, T. Doan, in H.H. Hoang, R. Schutz, J.B. Bernstein, B. Vasquez (eds,), Proc. of SPIE -- The Int. Sec. for Optical Eng., Monterey, CA, pp. 34 (1993)
[14] T.S. Cale, G.B. Raupp, J.T. Hiltman, M.J. Rice, Jr., in T.S. Cale, F.S. Pintchovski (eds.), Proc. of Adv. Metallization for ULSI Applications, ULSI-VIII, Mater. Res. Soc., Tempe, AZ, pp. 195 (1993)
[15] S. Roy, Advanced Merallization and Interconnect Systems for ULSI Applications, (1995)
[16] M. Rutten, P. Feeney, R. Cheek and W. Landers, Semiconductor Int., 122 (1995)
[17] Ku, V., Low Tinv (1.8 nm) Metal-Gated MOSFETs on SiO2-Based Gate Dielectrics for High Performance Logic Applications. Extended Abstracts of the 2003 Int. Conf. Solid State Devices Mater, (2003)
[18] Ieong, M., et al., High performance double-gate device technology: challenges and opportunities. Proc. 3rd Int. Symp. Quality Electronic Design, (2002)
[19] Choon Hwan Kim, Defect formation of chemical-vapor deposited tungsten on rapid thermal-annealed TiN/Ti, Sam-Dong Kim, P33, 2007
[20] Frank, M. M., et al., Poly-Si/High-k Gate Stacks with Near-Ideal Threshold Voltage and Mobility. Int. Symp. VLSI Technol., 97 (2005),
[21] K.C. Brown, J. Coniff, R. Barber, Development and Integration of a Submicron Tungsten Interconnect Process, Santa Clara, CA, (1991).