簡易檢索 / 詳目顯示

研究生: 黃信翰
Huang Shin Ham
論文名稱: 先進栓塞材料開發與製程整合
Advanced Contact Material Development and Intergration
指導教授: 李敏鴻
Lee, Min-Hung
鍾朝安
Jong, Chao-An
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 栓塞擴散阻障
英文關鍵詞: Plug, Material Development, Contact chain
論文種類: 學術論文
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在90年代末期,內連結導線部分應用逐漸被銅取代,但是垂直連結的栓塞材料仍就是鎢,主要考量鎢的熱與化學穩定性佳。但在逐漸微縮的元件要求下,傳統以CVD方式沉積的栓塞因阻值增高,衍生的寄生電阻串聯效應,將會嚴重影響元件特性。
    在本研究中,我們比較以不同方式(PVD & ALD)製備TiN當作擴散阻絕層(Diffusion Barryier Layer),鎢(W)當垂直栓塞導線。TiN是傳統鎢栓塞使用的擴散阻障層材料。而ALD製程是目前製作極薄、均勻薄膜的理想製程。本研究結合電漿結構改質與雜質摻雜的方式,試圖改變ALD-TiN在製程後的結構,以提高其高溫阻絕擴散能力,並透過Ag/n+ p-Si結構的二極體來觀察高溫漏電流行為,評斷阻絕能力。
    整合方面,本實驗以 200nm x 200nm 的Contact Plug Size為主,水平導線採用(Al-Si-Cu),製作接觸鏈(Contact chain)結構,探討不同製程下的垂直栓塞材料(W)之電性,並建立一套栓塞電阻量測結構製程流程(Process Flow)。藉由實驗的結果,探討如何降低整體鎢栓塞電阻值的方法,以及選用不同方式的擴散阻絕層製程以及改善方式,一方面減少填充時的孔洞,另一方面提升擴散阻絕能力,提供給下一世代栓塞製程延伸的選擇。 關鍵字:栓塞、鎢、擴散阻障

    Abstract

    In 1990s, Cu has lower electrical resistance and EM resist performances than Al became the new interconnect metal. Cu was also regarded as the candidate of contact material in replace of tungsten. However, high diffusivity of Cu through thinner diffusion barrier will be the major concern.
    In plug process improvement, we modified the standard recipe of CVD W process combined with the ALD-TiN material to enlarge the process window. Not only the void-free gap fill was achieved in 100nm plug structure but the plug resistance was effectively reduced with following forming gas annealing. In this study, we optimized TiN microstructure and N/Ti composition ratio using N plasma bombardment to enhance the diffusion retardation capability. An Ag/n+p-Si diode was fabricated to detect the leakage current/barrier performance of modified TiN film.
    A contact chain with 200m x 200m plug size was produced for plug resistance study. Different plug barrier material and modified CVD W process were fabricated for comparison. An integration process flow and capability for contact plug study was expected to be built-up in this study.
    Key word: Plug、Material Development、Contact chain

    目錄 摘要 I Abstract II 致謝 III-IV 目錄 V-VII 圖目錄 VIII-XI 表目錄 XII 第一章 緒論 1-1. 研究背景 1 1-2. 研究動機 3 1-3. 研究目的 5 第二章 文獻回顧 2-1.金屬化製程-----------------------------------------------------------------------7 2-2.多層金屬內連導線--------------------------------------------------------------8 2-3.現今業界成熟的銅金屬製程與鑲嵌技術(Damascene technology)--9 2-4.銀導線特性----------------------------------------------------------------------11 2-5.擴散阻障層---------------------------------------------------------------------14 2-6.低介電係數材料---------------------------------------------------------------16 2-7.導線尺寸效應(Size effect)-----------------------------------------------18 2-8.電遷移(Electromigration, EM)-----------------------------------------------21 第三章 儀器原理、方法與流程 3-1.化學氣相沉積-鎢製程--------------------------------------------------------23 3-2.原子層化學氣相沉積(Atomic Layer Chemical Vapor Deposition, ALD)----------------------------------------------------------------------------26 3-3.後段真空退火爐管( Backend vacuum annealing furnace ) ------------27 3-4.金屬四點探針量測儀(Metal 4 point probe)--------------------------------28 3-5.電性量測系統------------------------------------------------------------------30 3-6.掃描式電子顯微鏡觀察 ------------------------------------------------------31 3-7. X光繞射儀(X-ray Diffraction, XRD)--------------------------------------32 3-8穿透式電子顯微鏡( Transmission Electron Microscope, TEM )-------33 3-9.歐傑電子能譜儀檢測---------------------------------------------------------34 3-10. N plasma改質機台----------------------------------------------------------35 3-11. Al-Cu鍍膜機台--------------------------------------------------------------37 3-12. E-beam機台-------------------------------------------------------------------38 3-13. 蝕刻機台---------------------------------------------------------------------39 3-14. ADI in-line SEM機台-------------------------------------------------------40 3-15.去光阻機台--------------------------------------------------------------------41 3-16. Clean Bench設備------------------------------------------------------------42 3-17.量膜厚N&K機台-------------------------------------------------------------43 3-18. FIB機台-----------------------------------------------------------------------44 3-19.實驗流程-----------------------------------------------------------------------45 第四章 實驗結果與討論 4-1.超薄的N-rich ALD-TiN做為Ag的擴散阻障層 -----------------------46 4-2.先進栓塞材料開發與製程整合---------------------------------------------62 第五章 結論--------------------------------------------------------------------------------96 第六章 未來工作-------------------------------------------------------------------------98 參考文獻------------------------------------------------------------------------------------99

    [1] C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.M. Raymond, L.H. Gale, Surf. Interface Anal. 3 (1981).
    [2] G. Ramanath, J.E. Greene, J.R.A. Carlsson, L.H. Allen, V.C. Hornback, D.J. Allman, J. Appl. Phys. 85 (1999).
    [3] J. Schuhmacher, A. Martina, A. Satta, K. Maexa, Materials for Information Technology: Chapter 4 Atomic-layer Deposited Barrier and Seed Layers for Interconnects, Springer, London, ISBN: 978-1-85233-941-8, , pp. 39–50. (2005)
    [4] Sang Bom Kang, Kwang Jin Moon, Hee Sook Park, Myoung Bum Lee, Gil Weyun Choi, Young Wook Park, Sang In Lee, Moon Yong Lee, in: Interconnect Technology Conference, 2000. Proceedings of the IEEE 2000 International, vol. 5–7, June (2000)
    [5] Hee Sook Park, Kwang Jin Moon, Myoung Bum Lee, Sang Bom Kang, Gil Heyun Choi, Young Wook Park, Joo Tae Moon, in: VLSI Technology, Systems, and Applications, 2001, Proceedings of Technical Papers. 2001 International Symposium on, vol. 18–20, pp. 93–96 ()2001
    [6] J.Y. Dai, S.K. Loh, S.F. Tee, C.L. Tay, S. Ansari, Eddie Er, S. Redkar, in: IPFA 2001. Proceedings of the 2001 8th International Symposium, vol. 9–13, (2001)
    [7] Y. Tezuka, N. Kitano, N. Nakano, J. Electrochem. Soc. 142, pp. 3569. (1995)
    [8] H.L. Chang, F.L. Juang, C.T. Kuo, Japan Journal of Applied Physics, 41 (2002).
    [9] H.T. Shih, K.E. Violette, M.C. Ozturk, Proc. Mater. Res. Soc. Syrup. 387 (1995).
    [10] The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, pp. 19 (1994)
    [11] T. Ohba, in Rana, R.V. Joshi, I. Ohdomari (eds.), Multilevel Metallization Trends in Japan (Mater. Res. Soc., Murray Hill, NJ and Tokyo, Japan, pp. 25 (1992)
    [12] M. Sekine, N. Itoh, T. Akimoto, T. Shinmura, D.T.C. Huo, Y. Kakuhara, K. Kajiyana, Y. Yamada, K. Yamazaki, Y. Murao, Extended Abstr. of the 1992 Int. Conf. on Solid State Devices and Mater., Tsukuba, pp. 184 (1992)
    [13] G. Sandhu, S. Meikle, S. Kim, T. Doan, in H.H. Hoang, R. Schutz, J.B. Bernstein, B. Vasquez (eds,), Proc. of SPIE -- The Int. Sec. for Optical Eng., Monterey, CA, pp. 34 (1993)
    [14] T.S. Cale, G.B. Raupp, J.T. Hiltman, M.J. Rice, Jr., in T.S. Cale, F.S. Pintchovski (eds.), Proc. of Adv. Metallization for ULSI Applications, ULSI-VIII, Mater. Res. Soc., Tempe, AZ, pp. 195 (1993)
    [15] S. Roy, Advanced Merallization and Interconnect Systems for ULSI Applications, (1995)
    [16] M. Rutten, P. Feeney, R. Cheek and W. Landers, Semiconductor Int., 122 (1995)
    [17] Ku, V., Low Tinv (1.8 nm) Metal-Gated MOSFETs on SiO2-Based Gate Dielectrics for High Performance Logic Applications. Extended Abstracts of the 2003 Int. Conf. Solid State Devices Mater, (2003)
    [18] Ieong, M., et al., High performance double-gate device technology: challenges and opportunities. Proc. 3rd Int. Symp. Quality Electronic Design, (2002)
    [19] Choon Hwan Kim, Defect formation of chemical-vapor deposited tungsten on rapid thermal-annealed TiN/Ti, Sam-Dong Kim, P33, 2007
    [20] Frank, M. M., et al., Poly-Si/High-k Gate Stacks with Near-Ideal Threshold Voltage and Mobility. Int. Symp. VLSI Technol., 97 (2005),
    [21] K.C. Brown, J. Coniff, R. Barber, Development and Integration of a Submicron Tungsten Interconnect Process, Santa Clara, CA, (1991).

    無法下載圖示 本全文未授權公開
    QR CODE