簡易檢索 / 詳目顯示

研究生: 李苡柔
論文名稱: 赤背條鼠與臺灣森鼠間溫度棲位區隔與海拔分佈之研究
Thermal niche partitioning and elevational distribution of two murid rodents Apodemus agrarius and A. semotus
指導教授: 李佩珍
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 60
中文關鍵詞: 姬鼠屬生物地理分佈生態棲位模擬海拔分佈鼠科溫度棲位
英文關鍵詞: Apodemus, biogeography, ecological niche modeling, elevational distribution, murid, thermal niche
論文種類: 學術論文
相關次數: 點閱:395下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境溫度是影響物種分佈範圍的重要限制因子之一。臺灣小型哺乳動物在地理分佈上有明顯的海拔區隔。以姬鼠屬(Apodemus)的兩個物種為例,赤背條鼠(Apodemus agrarius)主要分佈在低海拔,臺灣森鼠(A. semotus)主要分佈在中高海拔。由於環境溫度與海拔梯度關係緊密,生物的海拔分佈可能是反映其對溫度的容忍度。且根據前人研究,兩物種具有溫度生理上的差異;赤背條鼠較不耐低溫,而臺灣森鼠在高溫時的散熱能力較差。因此本研究以赤背條鼠及臺灣森鼠為材料,探討溫度是否為造成近緣小型哺乳動物物種海拔分佈區隔的原因。本研究利用操控溫度試驗觀察兩物種在低溫(15oC-21oC)、中溫(21oC-27oC)及高溫(27oC-33oC)下的體重變化,建立兩物種的基礎溫度棲位,並建立兩物種的潛在分佈;同時,以生態棲位模擬(Ecological niche modeling, ENM)預測赤背條鼠與臺灣森鼠的潛在分佈,擷取潛在分佈範圍內的氣溫數值以建立兩物種之實際溫度棲位,將結果相互比較,以檢視兩物種的海拔分佈是否受其自身基礎溫度棲位所限制。溫度試驗的結果顯示赤背條鼠於低溫環境下體重下降,而臺灣森鼠在三個溫度處理下體重變化並無差異,以溫度試驗結果建立的潛在分佈預測圖,赤背條鼠的潛在分佈侷限於台灣低海拔地區,與生態棲位模擬所建立的潛在分佈範圍大致相符;臺灣森鼠以溫度試驗結果所建立的潛在分佈包含中低海拔地區,與生態棲位模擬所預測於中高海拔範圍的結果並不相符。赤背條鼠的基礎溫度棲位與實際溫度棲位大致相符,顯示赤背條鼠的分佈主要受其自身溫度棲位所限制,而臺灣森鼠則不相符,顯示其分佈可能是受到溫度以外的其他因子進一步限制。

    Ambient temperature is one of the key mechanisms determining species range limits. Small mammals in Taiwan are known for their distinct elevational distribution. For example, of the two Apodemus species, A. agrarius distributes at lower elevation and A. semotus distributes at higher elevation. Given the close relationship between temperature and elevation, species’ elevational distribution may reflect their thermal niche. Previous studies showed that the two Apodemus species are different in their thermal physiology in that A. agrarius has lower tolerance for low temperature whereas A. semotus has more difficulties to dissipate their body heat in high temperature. In this study, I used the pair of A. agrarius and A. semotus as a model system to investigate if thermal niche influences elevational distribution of closely related small mammal species. I used laboratory experiments to establish their thermal niche by subjecting them to low (15oC-21oC), intermediate (21oC-27oC) or high (27oC-33oC) temperature environment, and monitoring their body condition. I predicted their geographic distribution based on the fundamental thermal niche established in the laboratory. In addition, I used ecological niche modeling to predict habitat suitability of these two species, which was then used to extract temperature data that represent their realized thermal niche. The laboratory experiment showed that A. agrarius lost weight under low temperature treatment whereas A. semotus were not influenced by temperature treatments. For A. agrarius, the laboratory experiment and ecological niche model showed consistent patterns in predicted distribution and thermal niche, suggesting this species’ geographic distribution is likely limited by its own thermal niche. In contrast, according to the fundamental thermal niche from the current laboratory experiment as well as a previous experiment, A. semotus should be widely distributed across the entire Taiwan, which was inconsistent with the predicted distribution from the ecological niche model. For A. agrarius, the thermal niches established by extracting temperature data of the predicted distribution were similar whether the prediction distribution was based on the laboratory experiment or ecological niche model. In contrast, the thermal niches based on the laboratory experiment and ecological niche model were dissimilar for A. semotus. Therefore, this study suggests that the geographic distribution of A. agrarius is primarily restricted by its fundamental thermal niche, but that of A. semotus may be further restricted by factors other than temperature.

    摘要 I Abstract III 前言 1 材料與方法 7 建立基礎溫度棲位 7 建立實際溫度棲位 9 溫度棲位與地理分佈之關係 13 結果 16 溫度試驗 16 以實際溫度棲位建立潛在分佈(Dexp) 16 以生態棲位模擬建立潛在分佈(Denm) 17 Dexp與Denm 的比較 18 基礎溫度棲位(Nfundamental)與實際溫度棲位(Nrealized)的比較 18 穩定溫度區間建立的潛在分佈(Dsta)與Dexp及Denm間的比較 19 討論 21 赤背條鼠與臺灣森鼠在實驗室中的溫度生理 21 溫度生理與生態棲位模擬所建立的分佈準確性依物種而異 22 限制臺灣森鼠侷限於高海拔分佈的可能因子 24 利用單一族群進行物種溫度生理實驗的潛在問題 25 引用文獻 27

    朱惠菁 (2001) 花蓮地區月鼠與赤背條鼠之棲地利用研究。國立東華大學自然資源管理研究所碩士論文。花蓮,臺灣。
    李子昂 (2009) 月眉地區鼠科動物取食叢枝菌根菌與植被組成關係之研究。國立東華大學自然資源管理研究所碩士論文。花蓮,臺灣。
    李宜娟 (2001) 關渡草澤地共域小獸類的棲地利用。國立台灣大學動物學研究所碩士論文。台北,臺灣。
    李玲玲、張簡琳玟、鄭錫奇、李筠筠 (1992) 太魯閣國家公園嚙齒類動物調查內政部營建署太魯閣國家公園管理處八十一年度研究報告(T81-1)。
    翁叔平、楊承道 (2012) 臺灣地區月降雨及1公里網格資料庫之建立(1960-2009)及其在近未來(2015-2039)的氣候推估應用。中華民國氣象學會,40,349-370。
    陳界良 (2010) 臺灣中部大肚台地赤背條鼠(Apodemus agrarius)體內金屬(鎳、銅、鋅、砷、鎘和鉛)濃度的調查。靜宜大學生態學研究所碩士論文,臺中,臺灣。
    陳佑哲 (2005) 臺灣中部不同海拔分佈野鼠的溫度調節比較。私立東海大學生命科學系碩士論文。臺中,臺灣。
    張登銓 (2009) 有勝溪山區農業地景的小型哺乳動物多樣性。國立東華大學自然資源管理研究所碩士論文。花蓮,臺灣。
    張毓琦 (2004) 臺灣地區鼠科動物取食叢枝內生菌根菌孢子之生態研究。國立東華大學自然資源管理研究所碩士論文。花蓮,臺灣。
    曾翌碩、林文隆、孫元勳 (2007) 福寶與鰲鼓地區渡冬短耳鴞(Asio flammeus)食性。臺大實驗林研究報告,21, 275-282。
    葉威廷 (2012) 運用穩定同位素探討合歡山地區兩個小鼠群聚的食物資源區隔。臺灣大學生態學與演化生物學研究所。台北,臺灣。
    嚴國恩 (2012) 赤背條鼠(Apodemus agrarius)於繁殖季的空間及行為互動。國立東華大學自然資源管理研究所碩士論文。花蓮,臺灣。
    Andrés, G. (2006) Using ecological niche modelling to identify diversity hotspots for the herpetofauna of Pacific lowlands and adjacent interior valleys of Mexico. Biological Conservation, 130, 25–46.
    Banko, P.C., Oboyski, P.T., Slotterback, J.W., Dougill, S.J., Goltz, D.M., Johnson, L., Laut, M.E. & Murray, T.C. (2002) Availability of food resources, distribution of invasive species, and conservation of a Hawaiian bird along a gradient of elevation. Journal of Biogeography, 29, 789–808.
    Barve, N. (2008) Tool for Partial-ROC. Biodiversity Institute, Lawrence, KS, ver 1.0.
    Bing, C., Frankish, H.M., Pickavance, L., Wang, Q., Hopkins, D.F., Stock, M.J. & Williams, G. (1998) Hyperphagia in cold-exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY. American Journal of Physiology, 274, R62-R68.
    Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Sobero´n, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography, 29, 129–151.
    Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515.
    Guisan, A. & Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.
    Hayes, J.P. (1989) Altitudinal and seasonal effects on aerobic metabolism of deer mice. Journal of Comparative Physiology B, 159, 453-459.
    Hirzel, A.H. & Lay, G.L. (2008) Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45, 1372–1381.
    Holt, R.D. (2009) Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences, 106, 19659–19665.
    Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785.
    Hsu, F.H., Lin, F.J. & Lin, Y.S. (2001) Phylogeographic Structure of the Formosan Wood Mouse, Apodemus semotus Thomas. Zoological Studies, 40, 91-102.
    Huang, S.P., Hsu, Y. & Tu, M.C. (2006) Thermal tolerance and altitudinal distribution of two Sphenomorphus lizards in Taiwan. Journal of Thermal Biology, 31, 378–385.
    Humphries, M.M., Thomas, D.W. & Speakman, J.R. (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature, 418, 313–316.
    Hutchinson, G.E. (1957) Concluding remarks. Cold spring Harbor Symposia, 22, 415–427.
    Kolbe, J.J., Vanmiddlesworth, P.S., Losin, N., Dappen, N. & Losos, J.B. (2012) Climatic niche shift predicts thermal trait response in one but not both introductions of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, USA. Ecology and Evolution, 2, 1503–1516.
    Krockenberger, A.K., Edwards, W. & Kanowski, J. (2012) The limit to the distribution of a rainforest marsupial folivore is consistent with the thermal intolerance hypothesis. Oecologia, 168, 889–899
    Leung, P.M. & Horwitz, B.A. (1976) Free-feeding patterns of rats in response to changes in environmental temperature. American Journal of Physiology, 231, 1220-1224.
    Linkie, M., Chapron, G., Martyr, D.J., Holden, J. & Leader-Williams, N. (2006) Assessing the viability of tiger subpopulations in a fragmented landscape. Journal of Applied Ecology, 43, 576–586.
    Monadjem, A. (1999) Geographic distribution patterns of small mammals in Swaziland in relation to abiotic factors and human land-use activity. Biodiversity and Conservation, 8, 223-237.
    Montgomery, K. (2006) Variation in temperature with altitude and latitude. Journal of Geography, 105, 133-36.
    Musser, G.G. & Carleton, M.D. (1993) Family Muridae. Pp. 501–755, in Mammal species of the world: a taxonomic and geographic reference (D. E. Wilson and D. M. Reeder, eds.). 2nd ed. Smithsonian Institution Press, Washington D.C., xviii + 1206 pp.
    Olson, J.R., Cooper, S.J., Swanson, D.L., Braun, M.J. & Williams, J.B. (2010) The relationships of metabolic performance and distribution in black-capped and Carolina chickadees. Physiological and Biochemical Zoology, 83, 263–275.
    Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117.
    Peterson, A.T. (2001) Predicting species' geographic distributions based on ecological niche modeling. Condor, 103, 599–605.
    Peterson, A.T., Papes, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling, 213, 63-72.
    Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
    Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197.
    Rezende, E.L., Silva-Durán, I., Novoa, F.F. & Rosenmann, M. (2001) Does thermal history affect metabolic plasticity?: a study in three Phyllotis species along an altitudinal gradient. Journal of Thermal Biology, 26, 103-108.
    Rodríguez, J.P., Brotons, L., Bustamante, J. & Seoane, J. (2007) The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions, 13, 243–251.
    Schulman, L., Toivonen, T. & Ruokolainen, K. (2007) Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation. Journal of Biogeography, 34, 1388-1399.
    Taniguchi, Y. & Nakano, S. (2000) Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology, 81, 2027-2039. Toïgo, C., Gaillard, J.M., Laere, G.V., Hewison, M. & Morellet, N. (2006) How does environmental variation influence body mass, body size, and body condition? Roe deer as a case. Ecography, 29,301-308.
    Toïgo, C., Gaillard, J.M., Laere, G.V., Hewison, M. & Morellet, N. (2006) How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography, 29, 301-308.
    Twomey, E., Morales, V. & Summers, K. (2008) Evaluating condition-specific and asymmetric competition in a species-distribution context. Oikos, 117, 1175-1184.
    Yu, H.T. (1994) Distribution and abundance of small mammals along a subtropical elevational gradient in central Taiwan. Journal of zoology, 234, 577-600.

    下載圖示
    QR CODE