簡易檢索 / 詳目顯示

研究生: 陳韋廷
Chen, Wei-Ting
論文名稱: 基於可變空間規畫之半導體封測產能重新配置
Changeable Space Programming Based Reconfiguration of Semiconductor Assembly and Testing Capacity
指導教授: 黃啟祐
Huang, Chi-Yo
口試委員: 陳良駒
Chen, Liang-Chu
黃日鉦
HUANG, JIH-JENG
黃啟祐
HUANG, Chi-Yo
口試日期: 2022/07/17
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 74
中文關鍵詞: 半導體測試產能規劃新型規劃法可變空間規劃法
英文關鍵詞: Semiconductor testing, capacity planning, De Novo Programming, Changeable Space Programming
研究方法: 個案研究法主題分析
DOI URL: http://doi.org/10.6345/NTNU202205657
論文種類: 學術論文
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去幾年來,由於各種新興資通訊產品(如第五代行動通訊、高效能運算等技術)穩步發展,半導體測試之需求不斷將會再提昇。廠商於追求營收與獲利成長的同時,必須考量,如何求公司內部生產設施與外包廠商產能之最適規劃,以兼顧測試品質,並且可避免產能擴充過於快速,於景氣衰退時面臨利用率過低的問題。過去,多有學者導入新型規劃法(De novo Programming),求廠內與外包廠商產能配置之最佳化,唯新型規劃法所求解與渴望水準(Aspired Level) 仍有所差距,並非實際可達之最佳化。因此,本研究導入可變空間規劃法(Changeable Space Programming),發展測試廠渴望產能之規劃模型。本研究將以某封測廠產能規劃之案例,實證分析模型之可行性。依據實證研究,可變空間規劃確實較新型與線性規劃法所得之結果為佳。發展完善之架構,將可用於將任何工廠之設備配置最適化。

    In recent years, the demand for semiconductor testing has continued to expand as a result of the continuing development of new information and communication products (such as fifth-generation mobile communication, high-performance computing, and other technologies). While pursuing revenue and profit growth, manufacturers must consider how to find the optimal planning of the company's internal production facilities and the capacity of outsourced manufacturers, taking test quality into account and avoiding the rapid expansion of production capacity and overutilization during recessions. low problem. In the past, a number of academics have presented a novel planning method (De novo Programming) to optimize the capacity allocation of in-house and outsourced manufacturers. Despite this, there is still a gap between the new planning approach and the aspired level, which is unattainable. The optimal answer Consequently, this study introduces the approach of changeable space programming and builds the planning model for the test factory's production capacity aspirations. This study will verify the model's feasibility using the empirical case modified from a real capacity planning problem of a semiconductor assembly and packaging plant. Based on the results of the empirical study, changeable space programming indeed can derive better results than the ones derived by De Novo and linear programming techniques. In the future, capacity plan of any factory can be optimized by utilizing a well-developed framework.

    摘要 i Abstract ii Table of Content iii List of Table v List of Figure vi Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Motivations 3 1.3 Research Purposes and Limitations 4 1.4 Research Method and Framework 6 Chapter 2 Literature review 9 2.1 Semiconductor Assembly and Testing Process 9 2.2 Capacity Planning 20 2.3 Changeable and Reconfiguration Optimization 25 2.4 Changeable Space Programming 28 Chapter 3 Research Methods 31 3.1 Multi-Objective Decision Making 31 3.2 Optimal System Design and De novo Programming 34 3.3 Formulation of Final Testing Capacity Planning Optimization 36 3.4 Changeable Space Programming Formulation 40 Chapter 4 Empirical Case 43 4.1 The Problem Descriptions 43 4.2 Formulation of the Optimization Problem 46 4.3 Solving the Problem by an Approach of MODM 47 4.4 Solving the Resource Allocation of Final Testing Industry by De Novo Programming Approach 49 4.5 Solving the Problem with Changeable Budget 54 4.6 Solving the Problem with Changeable Objective Coefficients 58 4.7 Solving the Problem with Changeable Technological Coefficients 61 Chapter 5 Discussion 65 Chapter 6 Conclusions 69 Reference 70

    Ali, L., Sidek, R., Aris, I., Suparjo, B. S., & Ali, M. A. M. (2004). Challenges and directions for testing IC. Integration, 37(1), 17-28.

    Avinash, S., & Vineet, K. (2021). Semiconductor Packaging Market. Retrieved from https://www.alliedmarketresearch.com/semiconductor-packaging-market-A09496

    Chen, A., & Lo, R. H.-Y. (2012). Semiconductor Packaging: Materials Interaction and Reliability. Boca Raton, F.L.: CRC Press.

    Chen, J. K., & Tzeng, G.-H. (2009). Perspective strategic alliances and resource allocation in supply chain systems through the De Novo programming approach. International Journal of Sustainable Strategic Management, 1(3), 320-339.

    Chianglin, C. Y., Lai, T. C., & Yu, P. L. (2007). Linear Programming Models With Changeable Parameters—Theoretical Analysis On" Taking Loss At The Ordering Time And Making Profit At The Delivery Time". International Journal of Information Technology & Decision Making, 6(04), 577-598.

    Fiala, P. (2018). Project portfolio designing using data envelopment analysis and De Novo optimisation. Central European Journal of Operations Research, 26(4), 847-859.

    Fisel, J., Exner, Y., Stricker, N., & Lanza, G. (2019). Changeability and flexibility of assembly line balancing as a multi-objective optimization problem. Journal of manufacturing systems, 53, 150-158.

    Geng, M. H. (2018). Semiconductor Manufacturing Handbook (2nd ed.). New York, N.Y.: McGraw-Hill.

    Ghasemi, A., Azzouz, R., Laipple, G., Kabak, K. E., & Heavey, C. (2020). Optimizing capacity allocation in semiconductor manufacturing photolithography area–Case study: Robert Bosch. Journal of manufacturing systems, 54, 123-137.

    Greig, W. (2007). Integrated Circuit Packaging, Assembly and Interconnections. New York, N.Y.: Springer Science & Business Media.

    Hackman, S. T., & Platzman, L. K. (1990). Near-optimal solution of generalized resource allocation problems with large capacities. Operations Research, 38(5), 902-910.

    Herding, R., & Mönch, L. (2022). An agent-based infrastructure for assessing the performance of planning approaches for semiconductor supply chains. Expert Systems with Applications, 202, 117001.

    Hsieh, L. Y., & Hsieh, T.-J. (2018). A throughput management system for semiconductor wafer fabrication facilities: Design, systems and implementation. Processes, 6(2), 16.

    Huang, J.-J., & Tzeng, G.-H. (2014). New thinking of multi-objective programming with changeable space–in search of excellence. Technological and Economic Development of Economy, 20(2), 254-273.
    Huang, J.-J., Tzeng, G.-H., & Ong, C.-S. (2005). Motivation and resource-allocation for strategic alliances through the DeNovo perspective. Mathematical and Computer Modelling, 41(6-7), 711-721.

    Huang, J.-J., Tzeng, G.-H., & Ong, C.-S. (2006). Choosing best alliance partners and allocating optimal alliance resources using the fuzzy multi-objective dummy programming model. Journal of the operational research society, 57(10), 1216-1223.

    Ichiro, A., ASao, N., & Ryo, H. (1999). Semiconductor Packaging Technologies for Miniaturization and High Pin Count,. Hitachi Review, 48(2), 95-98.
    Järvenpää, E., Siltala, N., Hylli, O., & Lanz, M. (2021). Capability matchmaking software for rapid production system design and reconfiguration planning. Procedia CIRP, 97, 435-440.

    Kitamura, S., Mori, K., & Ono, A. (2006). Capacity planning method for semiconductor fab with time constraints between operations. Paper presented at the 2006 SICE-ICASE International Joint Conference.
    Kopp, D., Mönch, L., Pabst, D., & Stehli, M. (2019). Qualification management in wafer fabs: Optimization approach and simulation-based performance assessment. IEEE Transactions on Automation Science and Engineering, 17(1), 475-489.

    Lamson, M., Cangellaris, A., & Madenci, E. (2007). Integrated-circuit packaging. In Y. Nishi & R. Doering (Eds.), Handbook of Semiconductor Manufacturing Technology (pp. 32-31-32-30). Boca Raton, F.L.: CRC Press.

    Lim, S. K. (2014). Assembly Techniques and Packaging. In Process Integration and IC Manufacturing (pp. 63-94). Perak, Malaysia: Universiti Tunku Abdul Rahman.

    Lo, W.-C., Lu, C.-H., & Chou, Y.-C. (2020). Application of Multicriteria Decision Making and Multi-Objective Planning Methods for Evaluating Metropolitan Parks in Terms of Budget and Benefits. Mathematics, 8(8), 1304.

    Low, M. Y. H., Lye, K. W., Lendermann, P., Turner, S. J., Chim, R. T. W., & Leo, S. H. (2005). An agent-based approach for managing symbiotic simulation of semiconductor assembly and test operation. Paper presented at the The Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, Utrecht, Netherlands.

    Mittal, S., Albalak, H., & Keith, C. (2021). Maximizing Output from an Equipment Fleet in a Semiconductor Fab. Paper presented at the 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM).

    Mohammed, A. R., & Kassem, S. S. (2020). Product Mix Optimization Scenarios: A Case Study for Decision Support Using Linear Programming Approach. Paper presented at the 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE).

    Naderi, B., & Azab, A. (2021). Production scheduling for reconfigurable assembly systems: Mathematical modeling and algorithms. Computers & Industrial Engineering, 162, 107741.
    National Semiconductor. (1999). Semiconductor Packaging Assembly Technology. Dallas, T.X.: Texas Instruments.

    Naz, S., Ashraf, S., & Akram, M. (2018). A novel approach to decision-making with Pythagorean fuzzy information. Mathematics, 6(6), 95.

    Quadt, D., & Kuhn, H. (2003). Production planning in semiconductor assembly. Paper presented at the Fourth Aegean International Conference on Analysis of Manufacturing Systems, Samos Island, Greece.

    Rowshannahad, M., Dauzere-Peres, S., & Cassini, B. (2015). Capacitated qualification management in semiconductor manufacturing. Omega, 54, 50-59.

    Saha, S. K. (2013). Emerging business trends in the semiconductor industry. Paper presented at the PICMET'13: Technology Management in the IT-Driven Services (PICMET), San Jose, C.A.

    Seidel, G., Preuss, P., Canbolat, C., Low, S. L., Chan, C. W., Gan, B. P., . . . Tang, A. Y. (2019). An integration of static and dynamic capacity planning for a ramping fab. Paper presented at the 2019 Winter Simulation Conference (WSC).

    Semiconductor Industry Association. (2009). International Technology Roadmap for Semiconductors. Washington, D.C.: Semiconductor Industry Association.

    Song, Y., Zhang, M. T., Yi, J., Zhang, L., & Zheng, L. (2007). Bottleneck station scheduling in semiconductor assembly and test manufacturing using ant colony optimization. IEEE Transactions on Automation Science and Engineering, 4(4), 569-578.

    Töpper, M., & Tönnies, D. (2018). Microelectronic Packaging. In M. H. Geng (Ed.), Semiconductor Manufacturing Handbook (2nd ed.). New York, N.Y.: McGraw-Hill.

    Tu, K.-N., Chen, C., & Chen, H.-M. (2022). Electronic Packaging Science and Technology. Hoboken, N.J.: John Wiley & Sons.
    Tzeng, G.-H., & Huang, J.-J. (2013). Fuzzy Multiple Objective Decision Making. Bocal Raton, F.L.: CRC Press.

    Wang, L.-T., Wu, C.-W., & Wen, X. (2006). VLSI Test Principles and Architectures: Design for Testability. San Francisco, C.A.: Morgan Kaufmann Publishers.

    Zeleny, M. (1982). Multiple Criteria Decision Making. New York, N.Y.: McGraw-Hill.

    Zeleny, M. (1986). Optimal system design with multiple criteria: De Novo programming approach. Engineering Costs and Production Economics, 10(1), 89-94.

    Zeleny, M. (1990). Optimizing given systems vs. designing optimal systems: The De Novo programming approach. International Journal of General Systems, 17(4), 295-307.

    Zhang, M. T., Niu, S., Deng, S., Zhang, Z., Li, Q., & Zheng, L. (2007). Hierarchical capacity planning with reconfigurable kits in global semiconductor assembly and test manufacturing. IEEE Transactions on Automation Science and Engineering, 4(4), 543-552.

    Zhang, Y., & Atkins, D. (2019). Medical facility network design: User-choice and system-optimal models. European Journal of Operational Research, 273(1), 305-319.

    無法下載圖示 本全文未授權公開
    QR CODE