研究生: |
黃智欣 Huang Chih Hsin |
---|---|
論文名稱: |
轉殖病毒胸腺嘧啶激脢基因於p53圖變形人類非小細胞肺癌細胞株之研究 The study of p53-mutated human non-small cell lung cancer cells transfected with HerpesSimplex Virus type I- thymidine kinase (HSV-tk) cDNA |
指導教授: |
方剛
Fang, Kang |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 非小細胞肺癌細胞 、疱疹病毒胸腺嘧啶激酶 、賽默芬 、旁觀者效應 、老化 |
英文關鍵詞: | non-small cell lung cancer cells, Herpes Simplex Virus type I- thymidine kinase, ganciclovir, bystander effect, senescence |
論文種類: | 學術論文 |
相關次數: | 點閱:235 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去研究指出,肺癌細胞的抗藥性與腫瘤抑癌基因之功能缺損有關。本研究證實,以不同劑量之賽默芬 (GCV),處理已轉殖疱疹病毒胸腺嘧啶激酶 (HSV-tk) 質體之p53點突變 (R267P) 的非小細胞肺癌 (NSCLC) 細胞株H1437產生胞殺性 (cytotoxicity),讓腫瘤細胞生長停滯,以至死亡。進一步探討HSV-tk表現與胞殺性的關係,其療效得以放大的原因是利用細胞間物質流通所引起的「旁觀者效應」,在這也說明離體細胞或是活體研究上何以有效抑制腫瘤細胞的生長。另外,利用流式細胞儀分析H1437轉殖株於GCV誘導後,結果顯示,細胞停滯於S及G2/M細胞週期,再利用PKH67染色法,進一步證實細胞的生長確有停滯。研究中也發現,細胞老化的重要指標 (SA-β-gal) 呈現正反應,確認轉殖H1437細胞於GCV處理生長受到抑制,主要是由於細胞老化所導致。繼續探究導致老化的分子機制發現:(a) 隨著GCV處理的時間增加,端粒酶蛋白 (TERT) 的表現下降,再以TRAP assay分析端粒酶的活性也隨GCV增加而減弱,(b) 內生性細胞週期調控分子,如cyclin A及cyclin B1有明顯增加,腫瘤抑制蛋白p21下降,因此證實,轉殖H1437細胞生長和分裂的停滯與GCV所引發端粒酶活性降低有關。本研究的結論也知,p53突變之人類非小細胞肺癌細胞中,HSV-tk/GCV基因治療系統造成腫瘤細胞的死亡,主要是由於細胞發生老化所導致,而此方式若能再積極探討,對未來在臨床上癌症的治療可以提供一個新方向。
In view of the functional loss of tumor suppressors being associated to drug resistance in most of lung cancers, we have demonstrated dose-dependent ganciclovir (GCV)-induced cytotoxicity following delivery of recombinant prodrug herpes simplex virus type I thymidine kinase (HSV-tk) cDNA in highly metastatic and tumorigenic human non-small-cell-lung cancer (NSCLC) cells H1437 with mutant p53 (R267P). It is found that cells with acquisition of HSV-tk cDNA conferred GCV susceptibility to the selected clones and the effect proved proportional to the level of HSV-TK expressed both in vivo and in vitro. The inhibition of cell proliferation in culture and the regression of xenograft tumors in nude mice were demonstrated caused by triggering senescence program as a result of GCV exposure in the selected HSV-tk clones. The potent bystander effects both in vivo and in vitro systems was found correlated with HSV-TK expressed accordingly. In addition, H1437 cells underwent ecotopic transfer of HSV-tk lead to S- and G2/M-phase arrest after GCV induction prior to emergence of senescence-like phenotype that expression of the senescence marker SA-β-gal and enlarged and fattened morphology. And we also observed that transfectant cells were growth-retarded after drug treatment by PKH67 fluorescence detection. To address more in-depth mechanism leading to senescence phenotype, we identified two steps prior to cell death as triggered by senescence progression: (a) decreased expression and activity of telomerase (b) escalation of endogenous cell cycle modulators, cyclin A and cyclin B1. Taken all the work together, we concluded that HSV-tk/GCV system constitutes an effective treatment in human NSCLC cells with mutated p53 and the pathway leading to cell death through senescence activation ought to become an alternative and effective approach in restraining growth of human NSCLC cells lacking functional p53.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Campisi, J. (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 11, S27–S31.
Chang, B. D., Broude, E. V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., Kandel, E. S., Lausch, E., Christov, K., and Roninson, I. B. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59, 3761–3767.
Chang, B. D., Xuan, Y., Broude, E. V., Zhu, H., Schott, B., Fang, J., and Roninson, I. B. (1999). Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 18, 4808-4818.
Chiu, C. C., Kang, Y. L., Yang, T. H., Huang, C. H., and Fang, K. (2002). Ectopic expression of herpes simplex virus-thymidine kinase gene in human non-small cell lung cancer cells conferred caspase-activated apoptosis sensitized by ganciclovir. Int. J. Cancer. 102, 328-333.
Cordon-Cardo, C. (1995). Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am. J. Pathol. 147, 545-560.
Culver, K.W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E H., and Blaese, R. M. (1992). In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 256, 1550-1552.
Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., and Traganos, F. (1997). Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry. 27, 1-20.
Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. 92, 9363–9367.
Freeman, S. M., Abboud, C., Whartenby, K., Packman, C., Koeplin, D., Moolten, F.,
and Abraham, G. (1993). The "bystander effect": tumor regression when a fraction
of the tumor mass is genetically modified. Cancer Res. 53, 5274-5283.
Freeman, S. M., McCune, C., Robinson, W., Abboud, C. N., Abraham, G. N., Angel, C., and Marrogi, A. (1995). The treatment of ovarian cancer with a gene modified cancer vaccine: a phase I study. Human Gene Ther. 6, 927-939.
Fujiwara, T.,Mukhopadhyay, T., Cai, D. W., Morris, D K., Roth, J. A., and Grimm, E. A. (1994). A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res. 53, 4129-4133.
Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science. 246, 629-634.
Hinds, P. W., and Weinberg, R. A. (1994). Tumor suppressor genes. Curr. Opin. Genet Dev. 4, 135-141.
Hunter, T., and Pines, J. (1994). Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 79, 573-582.
Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science. 266, 2011-2015.
Massague, J., and Polyak, K. (1995). Mammalian antiproliferative signals and their targets. Curr. Opin. Genet. 5, 91-96.
Mathon, N. F., and Lloyd, A. C. (2001). Cell senescence and cancer. Nat. Rev. Cancer. 1, 203–213.
McCart, J., Puhlmann, M., Lee, J., Hu, Y., Libutti, S., Alexander, H., and Bartlett, D. (2000). Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Therapy. 7, 1217-1223.
Moolten, F. (1994). Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther. 1, 278-1287.
Moolten, F. L., Wells, J. M., Heyman, R. A., and Evans, R. M. (1990). Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Human Gene Ther. 1, 125-1134.
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55-63.
Oliver, W. R., Michael, B., and Fabio, C. (1999). Enzyme prodrug gene therapy: synergistic use of the herpes simplex virus-cellular thymidine kinase/ganciclovir system and thymidylate synthase inhibitors for the treatment of colon cancer. Cancer Res. 59, 5233-5238.
Packer, R. J., Raffel, C., Villablanca, J. G., Tonn, J. C., Burdach, S. E., Burger, K., LaFond, D., McComb, J. G., Cogen, P. H., Vezina, G., and Kapcala, L. P. (2000). Treatment of progressive or recurrent pediatric malignant supratentorial brain tumors with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration. J. Neurosurg. 92, 249-254.
Pei, J., Stephen, H., and David, O. M. (1998). Nuclear localization of cyclin B1 controls mitotic entry after DNA damage. J. Cell Biol. 141, 875-885.
Plautz, G., Nabel, E. G., and Nabel, G. J. (1991). Selective elimination of recombinant genes in vivo with a suicide retroviral vector. New Biol. 3, 709-715.
Rousselle, C., Barbier, M., Comte, V. V., Alcouffe, C., Clement-Lacroix, J., Chancel, G., and Ronot, X. (2001). Innocuousness and intracellular distribution of PKH67: a fluorescent probe for cell proliferation assessment. In Vitro Cell Dev Biol. Anim. 37, 646-655.
Sommerfeld, H. J., Meeker, M. A.,Piatyszek, G. S., Bora, J. W. Shay, J. W., and Coffey, D. S. (1996). Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res. 56, 218-222.
Sherr, C. J. (1994). G1 phase progression: cycling on cue. Cell. 79, 551-555.
Sherr, C. J., and Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149-1163.
te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J., and Joel, S. P. (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876-1883.
Vile, R. G., Nelson, J. A., Castleden, S., Chong, H., and Hart, I. R. (1994). Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res. 54, 6228-6234.
Wills, K. N., Huang, W. M., Harris, M. P., Machemer, T., Maneval, D. C. and Gregory, R. J. (1995). Cancer Gene Ther. 2, 191-197.
Zhu, W. Y., Jones, C. S., Kiss, A., Matsukuma, K., Amin, S., and De Luca, L. M. (1997). Retinoic acid inhibition of cell cycle progression in MCF-7 human breast cancer cells. Exp. Cell Res. 234, 293-299.