簡易檢索 / 詳目顯示

研究生: 曾家俊
論文名稱: 單壁與雙壁奈米碳管之共振拉曼光譜及介電泳研究
Resonance Raman Scattering and Dielectrophoretic Studies of Single-Walled and Double-walled Carbon Nanotubes
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 146
中文關鍵詞: 單壁奈米碳管雙壁奈米碳管拉曼光譜介電泳
論文種類: 學術論文
相關次數: 點閱:209下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單壁奈米碳管製成時,其中約有1/3比例為金屬性,2/3為半導體性。藉由單壁與雙壁奈米碳管之共振拉曼散射光譜,我們探討單壁與雙壁奈米碳管管徑大小與導電性。藉由介電泳實驗,我們研究金屬性與半導體性單壁奈米碳管的分離情況。
    從單壁與雙壁奈米碳管的共振拉曼散射光譜研究中,我們發現:第一、由分析Stokes與anti-Stokes徑向呼吸模(RBM)的相對強度比,推算單壁與雙壁奈米碳管的導電性,與利用Kataura能隙圖的判斷結果皆大致吻合,但雙壁奈米碳管內外管徑差過小,外管的RBM拉曼光譜不明顯;第二、G-mode拉曼光譜所推測出的單壁奈米碳管導電性與前述結果具一致性;第三、入射雷射光子能量增加時,D-mode及G’-mode峰值皆呈現藍移現象,但在單壁奈米碳管中,D-mode及G’-mode峰值變化斜率與二維石墨層(薄膜)相似,而雙壁奈米碳管的峰值變化斜率與三維石墨層(鉛筆心)相似。
    從單壁奈米碳管的介電泳研究中,我們發現:第一、銅電極會產生電解現象,而金電極維持穩定狀態;第二、單壁奈米碳管僅附著在兩側電極邊緣上,中央電極邊緣上無附著物的蹤影;第三、經由G-mode拉曼光譜分析,介電泳實驗所收集的單壁奈米碳管之二維特性比裁剪前後更加明顯。

    Selection of the metallic and semiconducting single-walled carbon nanotubes (SWNTs) from bundle forms is important for technological applications in nanoscale devices. This works reports resonance Raman spectroscopy measurements of SWNTs and double-walled carbon nanotubes (DWNTs) addressing the identification of their diameters and electronic structures. Dielectrophoresis on SWNTs has also been demonstrated to separate these nanotubes.

    The electric conductivity of these nanotubes can be determined from the spectra of the Stokes and anti-Stokes radial breathing mode (RBM) and tangential mode (G-mode), which correlates well with the analysis of Kataura plot. However, the difference of the inner and outer DWNTs tubes is too small to obtain the detailed structural and electronic properties of DWNTs. Interestingly, the peak position of disorder mode (D-mode) and its overtone (G’-mode) shows a shift to higher frequencies with increasing laser photon energy. The slope of SWNTs(DWNTs) is similar to 2-dimensional(3-dimensional) graphite.

    Dielectrophoresis experiment of SWNTs show the gold electrode is more stable than the cooper one. The G-mode spectra of adherent SWNTs on the side electrode (no SWNTs on the middle electrode) exhibit characteristic 2-dimensional behavior.

    誌謝 ……………………………………………………………… i 中文摘要 ………………………………………………………… iii 英文摘要 ………………………………………………………… v 目錄 ……………………………………………………………… vii 表目錄 …………………………………………………………… ix 圖目錄 …………………………………………………………… xiii 第一章 緒論 …………………………………………………… 1 第二章 研究背景 ……………………………………………… 7 2-1 奈米碳管的晶格結構 ………………………………… 7 2-2 奈米碳管的電子結構 ………………………………… 9 第三章 實驗儀器設備及其基本原理 …………………………… 21 3-1 顯微雷射拉曼散射光譜儀 …………………………… 21 3-2 電泳與介電泳原理 …………………………………… 23 3-3 單壁奈米碳管酸液剪裁步驟 ………………………… 27 第四章 文獻回顧 ……………………………………………… 33 4-1奈米碳管的拉曼光譜研究 …………………………… 33 4-1-1 單壁奈米碳管 ………………………………… 37 4-1-2 雙壁奈米碳管 ………………………………… 41 4-2 AC介電泳應用之研究 ………………………………… 44 名詞解釋 …………………………………………………… 49 第五章 實驗結果與討論 ……………………………………… 75 5-1單壁奈米碳管之微觀共振拉曼散射研究 …………… 75 5-2雙壁奈米碳管之微觀共振拉曼散射研究 …………… 81 補充資料 ………………………………………………… 85 5-3單壁奈米碳管之介電泳研究 ………………………… 88 第六章 結論與未來展望 ……………………………………… 139 參考文獻 ………………………………………………………… 141

    [1] http://en.wikipedia.org/wiki/Graphite

    [2] http://en.wikipedia.org/wiki/Diamond

    [3] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
    [4] S. Iijima, Nature 354, 56 (1991).
    [5] http://en.wikipedia.org/wiki/Carbon_nanotube

    [6] N. Hamada, S. Sawada, and A. Ohiyama, Phys. Rev. Lett. 68, 1579 (1992).
    [7] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
    [8] M. S. Dresselhaus, G. Dresselhaus, R. Satio, and A. Jorio, Phys. Rep. 409, 47 (2005).
    [9] M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000).
    [10] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (London:Imperial College Press) (1998).
    [11] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 61, 2981 (2000).
    [12] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Syn. Met. 103, 2555 (1999).
    [13] 蔡淑慧,奈米通訊 第十二卷第二期,47 (2005)。
    [14] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, J. Appl. Phys. 73, 494 (1993).
    [15] Herbert A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, (1978).
    [16] T. B. Jones, Electromechanics of Particles, New York: Cambridge University Press (1995).
    [17] T. B. Jones, IEEE Enginerring in Medicine and Biology Magazine, 33 (2003).
    [18] Ning Peng, Qing Zhang, Jingqi Li, and Ningyi Liu, J. Appl. Phys. 100, 024309 (2006).
    [19] Zhi-Bin Zhang, Shi-Li Zhang, and Eleanor E. B. Campbell, Chem. Phys. Lett. 421, 11 (2006).
    [20] Natacha Mureau, Ernest Mendoza, and S. R. P. Silva, Appl. Phys. Lett. 88, 243109 (2006).
    [21] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Secince 280, 1253 (1998).
    [22] 邱聞鋒,國立中央大學物理系研究所碩士論文,(2004)。
    [23] S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).
    [24] Laurent Alvarez, Ariete Righi, Tony Guillard, Stéphane Rols, Eric Anglaret, Daniel Laplaze, and Jean-Louis Sauvajol, Chem. Phys. Lett. 316, 186 (2000).
    [25] Lue Henrard, Valentin N. Popov, and Angel Rubio, Phys. Rev. B 64, 205403 (2001).
    [26] G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, Phys. Rev. Lett. 85, 25 (2000).
    [27] J. Jiang, R. Saito, K. Sato, J. S. Park, Ge. G. Samsonidze, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 75, 035405 (2007).
    [28] Andrew P. Shreve, Erik H. Haroz, Sergei M. Bachilo, R. Bruce Weisman, Sergei Tretiak, Svetlana Kilina, and Stephen K. Doorn, Phys. Rev. Lett. 98, 037405 (2007).
    [29] Eugenio Di Donato, Matteo Tommasini, Chiara Castiglioni, and Giuseppe Zerbi, Phys. Rev. B 74, 184306 (2006).
    [30] Stefano Piscanec, Michele Lazzeri, J. Robertson, Andrea C. Ferrari, and Francesco Mauri, Phys. Rev. B 75, 035427 (2007).
    [31] Feng Wang, Weitao Liu, Yang Wu, Matthew Y. Sfeir, Limin Huang, James Hone, Stephen O’Brien, Louis E. Brus, Tony F. Heinz, and Y. Ron Shen, Phys. Rev. Lett. 98, 047402 (2007).
    [32] J.-L. Bantignies and J.-L. Sauvajol, Phys. Rev. B 74, 195425 (2006).
    [33] C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. Van Lier, J-C Charlier, M. S. Dresselhaus, R. Saito, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and M. A. Pimenta, Phys. Rev. B 73, 193408 (2006).
    [34] H. Rauf, T. Pichler, R. Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov, Phys. Rev. B 74, 235419 (2006).
    [35] A. G. Souza Filho, M. Endo, H. Muramatsu, T. Hayashi, Y. A. Kim, E. B. Barros, N. Akuzawa, Ge. G. Samsonidze, R. Saito, and M. S. Dresselhaus, Phys. Rev. B 73, 235413 (2006).
    [36] Kaori Hirahara, Mathieu Kociak, Shunji Bandow, Takanori Nakahira, Kouji Itoh, Yahachi Saito, and Sumio Iijima, Phys. Rev. B 73, 195420 (2006).
    [37] Wencai Ren, Feng Li, Pingheng Tan, and Hui-Ming Cheng, Phys. Rev. B 73, 115430 (2006).
    [38] Bin Shan and Kyeongjae Cho, Phys. Rev. B 73, 081401 (2006).
    [39] Kunitoshi Yamamoto, Seiji Akita, and Yoshikazu Nakayama, J. Phys. D: Appl. Phys. 31, L34 (1998).
    [40] Xianmong Liu, John L. Spencer, Alan B. Kaiser, and W. Mike Arnold, Chem. Appl. Phys. 6, 427 (2006).
    [41] S. Banerjee, B. White, L. Huang, B. J. Rego, S. O’Brien, and I. P. Herman, Appl. Phys. A 86, 415 (2007).
    [42] Ji-Eun Kim, June-Ki Park, and Chang-Soo Han, Nanotechnology 17, 2937 (2006).
    [43] Hee Won Seo, Chang-Soo Han, Sun Oh Hwang, and Jeunghee Park, Nanotechnology 17, 3388 (2006).
    [44] Seung II Jung, Jai Seong Choi, Hyung Cheoul Shim, Soohyun Kim, Sung Ho Jo, and Cheol Jin Lee, Appl. Phys. Lett. 89, 233108 (2006).
    [45] Junya Suehiro, Nobutaka Nakagawa, Shin-ichiro Hidaka, Makoto Ueda, Kiminobu Imasaka, Mitsuhiro Higashihata, Tatsuo Okada, and Masanori Hara, Nanotechnology 17, 2567 (2006).
    [46] Sampo Tuukkanen, J. Jussi Toppari, Anton Kuzyk, Lasse Hirviniemi, Vesa P. Hytönen, Teemu Ihalainen, and Päivi Törmä, Nano Lett. 6, 1339 (2006).
    [47] B. Shan and K. Cho, Phys. Rev. Lett. 94, 236602 (2005).
    [48] Ping Heng Tan, Yan Tang, Cheng Yong Hu, Feng Li, Yog Liang Wei, and Hui Ming Cheng, Phys. Rev. B 62, 5186 (2000).
    [49] I. W. Chiang, B. E. Brinson, A. Y. Huang, P. A. Willis, M. J. Bronikowsli, J. L. Margrave, R. E. Smalley, and R. H. Hauge, J. Phys. Chem. B 105, 8297 (2001).
    [50] J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).
    [51] C. V. Raman, Ind. J. Phys. 2, 387 (1928).
    [52] J. C. Charlier and P. Lambin, Phys. Rev. B 57, R15 037 (1998).
    [53] C. T. White and J. W. Mintmire, Nature (London) 394, 29 (1998).
    [54] A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Ünlü, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito, Phys. Rev. B 65, 155412-1 (2002).
    [55] L. G. Cancado, M. A. Pimenta, R. Saito, A. Jorio, L. O. Ladeira, A. Grueneis, A. G. Souza-Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 66, 035415 (2002).
    [56] A. G. Souza Filho, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, R. Saito, A. K. Swan, M. S. Ünlü, B. B. Goldberg, J. H. Hafner, C. M. Lieber, and M. A. Pimenta, Phys. Rev. B 65, 035404 (2001).
    [57] Seung Chul Lyu, Bao Chun Liu, Cheol Jin Lee, Hee Kwang Kang, Cheol-Woong Yang, and Chong Yun Park, Chem. Mater. 15, 3951 (2003).
    [58] P. H. Tan, Y. M. Deng, and Q. Zhao, Phys. Rev. B 58, 5435 (1998).
    [59] M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and M. Endo, Phys. Rev. B 59, R6585 (1999).
    [60] Christopher M. DiBiasio, Michael A. Cullinan, and Martin L. Culpepper, Appl. Phys. Lett. 90, 203116 (2007)
    [61] Ado Jorio, Paulo T. Araujo, Stephen K. Doorn, Shigeo Maruyama, Helio Chacham, and Marcos A. Pimenta, Phys. Stat. Sol. (b) 243, 3117 (2006)

    QR CODE