簡易檢索 / 詳目顯示

研究生: 何青胤
論文名稱: 二氧化矽催化吲哚烯丙基化之Friedel-Crafts反應
指導教授: 陳焜銘
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 112
中文關鍵詞: 吲哚
英文關鍵詞: indole
論文種類: 學術論文
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討以二氧化矽及有機催化劑催化Friedel-Crafts反應合成吲哚之烯丙基化產物。近年來發現許多天然物分子含有吲哚之分子結構,因具有生物活性,可應用於藥物分子的合成。我們以二氧化矽催化引朵與allylic acetate 40進行Friedel-Crafts反應,得到高產率的引朵烯丙基化產物,且大量製備仍然可以保持77%的產率;也嘗試使用有機催化劑催化其反應,眾多篩選反應後,發現以20 mol%的催化劑55,在二氯甲烷為溶劑下,可得到最佳產率9%及鏡像超越值20% ee,結果並不理想。後續研究在進行中,期望能夠找到合適的催化劑或者修飾起始物的官能基,使既有之催化劑能夠與起始物有更好的反應,改善產率及鏡像超越值。

    This dissertation focus on the use of silica-gel and organocatalyst to catalyze the Friedel-Crafts reaction of indole with allylic acetate 40. In recent years, indole derivatives has been found in many natural products, and their already used in a lot of pharmaceuticals because of their biological activities. In our lab we found that useing silica-gel as medium can get a high yield of indole allylation product, even if in large scale we can get 77% yield. We also use amounts of organocatalysts try to get some enantioselectivities, but the best result we can get only 9% yield and 20% ee when use 20mol % organocatalyst 55. In the future, we will continue this article, to get a high yield and high enantioselectivity is our objective, we will try to modify the substrate make it easier to interact with the catalyst, or to find some new catalysts.

    第一章 序論 1-1 吲哚衍生物之應用簡介 1 1-2 Friedel-Crafts Reaction 3 1-2-1 路易士酸催化 3 1-2-2 布朗斯特酸催化 4 1-2-3 有機催化劑非共價催化 6 1-2-4 沸石 7 1-3 研究動機 8 第二章 實驗結果與討論 2-1 起始物 allylic acetate 40的製備 9 2-2 二氧化矽應用於吲哚烯丙基化之Friedel-Crafts反應之探討 9 2-2-1 二氧化矽介質的選擇 9 2-2-2 溫度效應 11 2-2-3 當量數效應 11 2-2-4 添加劑效應 12 2-2-5 取代基效應 13 2-2-6 非吲哚親核劑探討 14 2-2-7 放大製備 15 2-2-8 機構之探討 15 2-2-4 添加劑效應 12 2-2-4 添加劑效應 12 2-2-4 添加劑效應 12 2-3 有機催化劑於吲哚烯丙基化之Friedel-Crafts反應之探討 17 2-3-1 溶劑效應 17 2-3-2 催化劑之篩選 19 2-3-3 掌性布朗斯酸與溶劑 21 2-3-4 添加劑效應 23 2-4 結論 23 2-5 實驗部分 24 2-5-1 分析儀器及基本實驗操作 24 2-5-2 實驗步驟與光譜數據 26 2-5-2-1 二氧化矽催化Friedel-Crafts反應一般實驗步驟 26 2-5-2-2 使用有機催化劑56催化Friedel-Crafts反應實驗步驟 40 2-6 參考文獻 41 附錄一、1H-NMR、13C-NMR之光譜 42 附錄二、X-ray單晶繞射結構解析與數據 97

    1. Moore, R. E.; Cheuk, C.; Patterson, G. M. L. J. Am. Chem. Soc. 1984, 106, 6456.
    2. Moore, R. E.; Cheuk, C.; Yang, X.-Q.; Patterson, G. M. L.; Bonjouklian, R.; Smitka, T. A.; Mynderse, J.; Foster, R. S.; Jones, N. D.; Swartzendruber, J. K.; Deeter, J. B. J. Org. Chem. 1987, 52, 1036.
    3. Fukuyama, T.; Chen, X. J. Am. Chem. Soc. 1994, 116, 3125.
    4. Sezaki, M.; Sasaki, T. Nakazawa, T.; Takeda, U.; Iwata, M.; Watanabe, T.; Koyama, M.; Kai, F.; Shomura, T.; Kojima, M. J. Antibiot. 1985, 38, 143.
    5. Hudkins, R. L.; Diebole, J. L. Tetrahedron Lett. 1997, 38, 915.
    6. Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275.
    7. Anna J. Kochanowska-Karamyan; Mark T. Hamann Chem. Rev. 2010, 110, 4489.
    8. Friedel, C., Crafts, J. M. J. Chem. Soc. 1877, 32, 725.
    9. Friedel, C., Crafts, J. M. Bull. Soc. Chim. France 1877, 27, 530.
    10. Claudio P.; Mikel O.; Bharat G. K.; Jesu´s M. G.; Anthony L. J. Am. Chem. Soc. 2005, 127, 4154.
    11. Masahiro T.; Keiichi S. J. Am. Chem. Soc. 2007, 129, 292.
    12. Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci A. Angew. Chem. Int. Ed. 2005, 44, 6576.
    13. Bich C.; Annie F.; Catherine G.; Patrick G. J. Org. Chem. 1986, 51, 2128.
    14. 袁冰(Yuan B), 乔卫红(Qiao W H), 李宗石(Li Z S), 王桂茹(Wang G R), 程侣柏(Cheng L B). 化学进展(Progress in Chemistry), 2005, 17(4), 686.
    15. Mannepalli L. K.; Kalluri V. S. R.; Mutyala S.; Kota B. S. K.; Boyapati M. C. Journal of Molecular Catalysis A:Chemical 2005, 225, 15.
    16. Indubhusan Deb; Pramod Shanbhag; Shaikh M. Mobin; Irishi N.N.Namboothiri
    Eur. J. Org. Chem. 2009, 4091.

    下載圖示
    QR CODE