簡易檢索 / 詳目顯示

研究生: 林鈺博
Lin, Yu-Po
論文名稱: 兩輪機器人之深度影像障礙物偵測與人臉識別
Two-wheeled Robots with Depth Image-based Obstacle Detection and Face Recognition
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 91
中文關鍵詞: 兩輪機器人人臉識別測距與避障類神經網路Kinect感應器
英文關鍵詞: Two-wheeled robot, Face recognition, ranging and obstacle avoidance, neural network, Kinect sensor
DOI URL: http://doi.org/10.6345/THE.NTNU.DEE.012.2018.E08
論文種類: 學術論文
相關次數: 點閱:130下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了將人臉識別功能與校正車體晃動測距誤差以及避障功能結合於兩輪機器人,使得機器人在照護及居家環境都能有更好的追蹤效果。兩輪機器人平衡或是移動時,會因為兩輪車機體晃動導致測距值的不穩定,本論文除了讓Kinect感應器的驅動馬達能自動使感應器保持水平外,也使用智慧型的預測方式來修正測距誤差值,增加測距值與避障決策的精準度。測距避障的部分則藉由Kinect感應器的深度影像完成,並將測距值與移動指令上傳至MySQL資料庫供兩輪機器人使用。在人臉識別的功能,本研究使用LBPH演算法完成,並以UART傳送資訊給兩輪機器人。並以實驗以及圖表驗證本論文提出的功能。

    This thesis proposes to combine the correction of robotic body sway ranging error, obstacle avoidance function and face recognition function in two-wheeled robots for the purpose of enabling the robots to have better tracking results in both personal care and home environments. When the two-wheeled robots autonomously balances or moves, the ranging value will be unstable due to the shaking of the two-wheeled robots. In addition to using the Kinect sensor's drive motor to automatically maintain the level of sensor, this paper also uses a smart prediction method to correct the ranging error value in order to increase the accuracy of ranging value and the obstacle avoidance decision. The obstacle avoidance function is completed by the depth image of the Kinect sensor, and the ranging value and the movement instruction are uploaded to the MySQL database. This study uses the LBPH algorithm to complete the face recognition function and sends information to the two-wheeled robots with the universal asynchronous receiver-transmitter. Finally, in order to verify the proposed method, some experiments are performed.

    中文摘要 i 英文摘要 ii 誌謝 iv 表目錄 vii 圖目錄 viii 第一章  緒論 1 1.1 研究動機與背景 1 1.2 研究目的 3 1.3 研究方法 3 1.4 論文架構 3 第二章  文獻探討與回顧 4 2.1 人臉辨識之演進 4 2.2 人臉辨識的系統模型介紹 6 2.3 深度影像的演進 10 2.3.1 被動測距傳感 11 2.3.2 主動測距傳感 14 2.4 Kinect 概念介紹 18 第三章  人臉識別演算法以及藉由Kinect深度影像測距完成避障功能實現 22 3.1 硬體架構 23 3.2 人臉識別前置作業 25 3.3 LBPH演算法完成人臉識別 26 3.4 使用LBPH之人臉識別流程 48 3.5 使用Kinect進行測距以及避障規劃 55 3.6 因應兩輪機器人晃動導致之測距問題修正 62 第四章  兩輪機器人搭配人臉識別及障礙物偵測系統 75 4.1 車體架構 75 4.2 兩輪機器人搭配人臉識別系統 76 4.3 人臉識別系統之比較 78 4.4 兩輪機器人抓取移動指令 80 4.5 兩輪機器人搭配即時測距修正系統 82 第五章  結論與未來展望 87 5.1 結論 87 5.2 未來展望 87 參考文獻 88 自傳 90 學術成就 91

    參考文獻
    [1] F. Kung, "Design of agile two-wheeled robot with machine vision," 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, 2017, pp. 1-5.
    [2] T. Ahonen, A. Hadid and M. Pietikainen, "Face Description with Local Binary Patterns: Application to Face Recognition," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037-2041, Dec. 2006.
    [3] H. Filali, J. Riffi, A. M. Mahraz and H. Tairi, "Multiple face detection based on machine learning," 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, 2018, pp. 1-8.
    [4] J. I. Flores-Delgado, L. G. Martínez-Santos, R. Lozano, I. Gonzalez-Hernandez and D. A. Mercado, "Embedded control using monocular vision: Face tracking," 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 2017, pp. 1285-1291.
    [5] K. R. Kakkirala, S. R. Chalamala and S. K. Jami, "Thermal Infrared Face Recognition: A Review," 2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim), Cambridge, United Kingdom, 2017, pp. 55-60.
    [6] Z. Yu, F. Liu, R. Liao, Y. Wang, H. Feng and X. Zhu, "Improvement of Face Recognition Algorithm Based on Neural Network," 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, 2018, pp. 229-234.
    [7] A. L. Ramadhani, P. Musa and E. P. Wibowo, "Human face recognition application using pca and eigenface approach," 2017 Second International Conference on Informatics and Computing (ICIC), Jayapura, 2017, pp. 1-5.
    [8] 深度影像 https://www.zhihu.com/question/37920173.
    [9] Kinect感應器 https://zh.wikipedia.org/wiki/Kinect.
    [10] M. Limin and Z. Peiyi, "The medical service robot interaction based on kinect," 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, 2017, pp. 1-7.
    [11] K. Goyal, K. Agarwal and R. Kumar, "Face detection and tracking: Using OpenCV," 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, 2017, pp. 474-478.
    [12] T. Ojala, M. Pietikäinen, and D. Harwood (1994), "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions", Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR 1994), vol. 1, pp. 582 - 585.
    [13] Kinect內部攝影機 https://archive.eettaiwan.com/www.eettaiwan.com/ART_8800636709_480502_NT_588d3aa8.HTM

    下載圖示
    QR CODE