研究生: |
管繼正 |
---|---|
論文名稱: |
應用在微結構形貌量測之白光干涉技術的設計與分析 Design and Analysis of White Light Interferometric Techniques in Microstructure Profile Measurement |
指導教授: |
張國維
Chang, Gao-Wei |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 白光干涉 、微結構形貌量測 、Linnik 干涉良測術 、系統設計與分析 |
英文關鍵詞: | White-light interferometry, microstructure profile measurement, Linnik interferometer, system design and analysis |
論文種類: | 學術論文 |
相關次數: | 點閱:272 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著奈米科技與微系統技術之興起,傳統的量測與檢測技術早已不敷產業界的需求及運用。為了滿足產業界與學術界在精密量測與自動化工程的需求,光電科技與自動化量測技術的結合是大家廣泛認同的發展趨勢。因此,本計畫的目的在設計並分析應用在微結構形貌量測之白光干涉技術,特別針對微機電、微光學、半導體等元件的表面形貌作非破壞性、即時且高解析度的量測。白光干涉技術係根據白光寬頻連續波長之頻譜特性(即同調長度很短的特色),利用零階干涉光強度最大值辨識法,找出干涉條紋的峰值強度位置(也就是零階、沒有光程差的地方),使用影像感測器(CCD)對二維平面的光強度作記錄,再使用線性位移裝置(例如PZT)作奈米步進掃描。最後再把三維空間所有光強度最大值之處找出,重建成三維表面輪廓。首先,我們分析白光干涉的理論基礎,拍和短同調的影響。接著,我們試著找出一般業者運用濾波器對於白光干涉量測的理論和應用,發現到將白光通過不同頻寬的濾波器將會影響其同調長度。再來,我們利用雙狹縫干涉的方式設計白光同調長度的測試治具,並且以Linnik的干涉架構設計白光干涉量測系統。其相關的模擬及實驗結果都相當令人滿意。相信此一論文對於白光量測技術之學術研究與產業發展將有相當大的助益。
In the recent years, with the advance of nano technology and micro-systems technology, traditional testing and measurement techniques can hardly meet the needs and applications from industries. To meet the demands, from them and universities, on the precise measurement and the automation engineering, incorporating the instrumentation and automation with the opto-electronic technology is very important. In this paper, our objective is to design and analyze white light interferometric techniques in microstructure profile measurement, especially for the surfaces of micro-mechatronic, micro-optical, and semi-conductor elements to do the non-destructive, real-time, and high resolution profile measurements. According to the property of short coherence length of white light, the white-light interferometry makes use of zero-order interference fringe identification method to find the position of the maximum intensity of interference fringes. First, we study the theoretical basis of white light interferometry (WLI), from the beat effects and the coherence length. Then, we explore the design method needing spectral filters to limit the bandwidth of white light. The different bandwidth of filters will change the coherence length of white light. Moreover, we make a test-tool for measuring the coherence length of filtered light. For the system, we adopt a Linnik interferometer configuration, as an example, to build up the measurement system. The related simulation results are quite satisfactory. We expect that it would be highly beneficial to the research of academic activities and the development of related industries for the techniques of white light testing and measurement.
Reference
[1] T. Dresel, G. Häusler, H. Venzke, "Three dimensional sensing of
rough surfaces by coherence radar," Appl. Opt. 31, 919 - 925 (1992).
[2] G. Häusler, P. Ettl, M. Schenk, C. Bohn, I. László, "Limits of optical
range sensors and how to exploit them," in International Trends in Optics and Photonics ICO IV, T. Asakura, ed. (Springer Series in Optical Sciences, Vol. 74, Springer Verlag, Berlin, Heidelberg, New York, 1999), pp. 328 - 342.
[3] A. W. Koch, M. W. Ruprecht, O. Toedter, G. Häusler, Optische
Messtechnik an technischen Oberflächen (Expert Verlag, Renningen 1998).
[4] Talysurf CCI 3000 non-contact 3D surface profiler catalog, 2002.
[5] 陸懋宏等,白光相移干涉術之三維表面量測,2003台灣光電科技研討會。
[6] A. A. Michelson, “Dètermination expèrimentale de la valeur du mètre en longuers d'ondes lumineuses,” Trav. Mem. Bur. Int. Poids Mes., pp.1-42, 1895.
[7] L. Basano et al., “Spatial and Temporal Coherence of Filtered Thermal Light.” Appl. Opt., 42, pp. 6239-6244, 2003.
[8] G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, pp. 3775–3783, 1990.
[9] S. S. C. Chim and G. S. Kino, “Three-dimensional image realization in interference microscopy,” Appl. Opt. 31, pp. 2550–2553, 1992.
[10] P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18, pp. 1462–1464, 1993.
[11] P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, pp. 389–401, 1995.
[12] K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13(4), pp. 832-843, 1996.
[13] R-J. Recknagel and G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Commun. 148, pp. 122–128, 1998.
[14] A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical scanning interferometry,” Appl. Opt. 39(13), pp. 2107-2115, 2000.
[15] A. Hirabayashi, H. Ogawa, and K. Kitagawa, “Fast surface profiler by white-light interferometry using a new algorithm, the SEST algorithm,” in Optical Manufacturing and Testing IV, H. P. Stahl, ed., Proc. SPIE 4451, pp. 356–367, 2001.
[16] Pavel Pavlicek and Jan Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces” Appl. Opt., vol. 42, pp. 1809-1813, 2003.
[17] Stanley S. C. Chim and Gordon S. Kino, “Phase measurements using the Mirau correlation microscope” Appl. Opt., vol. 30, pp. 2197-2201, 1991.
[18] Andreas Pfortner and Johannes Schwider, “Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures” Appl. Opt., vol. 40, pp. 6223-6228, 2001.
[19] R. E. Walpole, R. H. Myers, and S. L. Myers, Probability and Statistics, 6th ed., Prentice Hall, 1998.
[20] E. Hecht, Optics, 4th ed., Addison Wesley, 2002.
[21] F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed., Prentice Hall, 1993.
[22] P. Sandoz and G. Tribillion, “Profilimetry by zero-order interference fringe identification” Journal of Modern Optics, vol. 40, no. 9, pp. 1691-1700, 1993.