簡易檢索 / 詳目顯示

研究生: 周宥成
Zhou, You-Cheng
論文名稱: 經由分子內威悌反應與β -醯化之多樣性導向合成雜環化合物與酮基官能化亞烷基化合物
Diversity-Oriented Synthesis of Heteroaromatics via β-Acylation or Intramolecular Wittig Reactions
指導教授: 林文偉
Lin, Wen-Wei
口試委員: 林文偉
Lin, Wen-Wei
張永俊
Jang, Yeong-Jiunn
劉維民
Liu, Wei-Min
姚清發
Yao, Ching-Fa
口試日期: 2023/06/29
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 356
中文關鍵詞: 威悌反應β 位醯化多樣性導向合成策略化學選擇性
英文關鍵詞: Wittig reaction, β- acylation, Diversity-oriented synthesis, Chemoselectivity
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401055
論文種類: 學術論文
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討鄰羥基亞烷基茚二酮與膦、醯氯和鹼的反應條件下進行化學選擇性反應的研究。在此反應系統中,當起始物經過膦的麥可加成後形成葉立德中間體。該中間體具有兩個可能進行氧醯化的位置,並且通過調控兩當量醯化試劑的反應活性,可以引導反應沿著兩個不同的機制進行,從而實現化學選擇性的多樣性導向合成策略,合成出具有苯並呋喃衍生物和 β 位醯化產物。此方法可以在溫和的反應條件下進行,並且應用許多的受質當中皆具有良好的產率。

    This thesis aims to investigate the chemoselective reactions of 2-hydroxy-1,3-indandione alkylidenes, phosphorus and acyl chlorides in the presence of base. In this reaction system, the starting material undergoes a Michael addition with phosphorus to form a ylide intermediate. The ylide intermediate has two potential sites for acylation. By controlling the reactivity of two equivalents of acylating agents, we can direct the reaction through two different reaction pathways, thereby achieving a chemoselective and diversity-oriented synthesis strategy to obtain benzofuran derivatives and β-acylated products. The reaction conditions are mild, and the products with broad substrate scopes can be afforded in good to high yields.

    謝辭 i 摘要 iii Abstract v 目錄 vii 表列表 x 圖列表 xi 式列表 xiv 縮寫對照表 xv 1. 緒論 1 1-1 前言 1 1-1-1多樣性導向合成 1 1-1-2多樣性導向合成經由分子內威悌反應 2 1-1-3 醯化反應 4 1-1-4 亞烷基1,3-茚二酮衍生物的特性 8 1-1-5 鄰羥基之亞烷基茚二酮 8 1-1-6 苯並呋喃的結構介紹 10 1-2 研究動機與實驗設計 12 1-2-1 研究動機 12 1-2-2 實驗設計 13 2. 實驗結果與討論 14 2-1 苯甲酸酯基苯並呋喃化合物 14 2-1-1 使用單一醯化試劑-PhCOCl 14 2-1-2 使用新戊醯氯作為保護基條件 27 2-1-3 使用苯醯氯作為保護基條件 39 2-1-4 使用單一醯化試劑-三氟乙酸酐 49 2-2 酮基官能化亞烷基化合物 61 2-2-1 使用苯醯氯作為保護基條件 61 2-2-2 使用新戊醯氯作為保護基條件 74 3. 結論 79 4. 未來展望 80 4-1 更換各種雜環分子進行多樣性導向合成 80 4-1-1 鄰羥基亞烷基吡唑哢 (pyrazolone alkylidene) 81 4-1-2 鄰羥基亞烷基噻唑酮 (thiazolone alkylidene) 82 4-1-3 鄰羥基亞烷基羥吲哚 (oxindole alkylidene) 84 4-2 應用在不對稱合成反應 86 4-3 應用在金屬的偶合反應 86 5. 實驗數據與操作步驟 87 5-1 分析儀器 87 5-2 實驗操作步驟 88 5-2-1 Typical procedure (TP-1) for the preparation of starting materials 51 88 5-2-2 Typical procedure (TP-2) for the preparation starting materials 70 88 5-2-3 Typical procedure (TP-3) for the preparation of starting materials 82、92a 89 5-2-4 Typical procedure (TP-4) for the preparation of products 71 89 5-2-5 Typical procedure (TP-5) for the preparation of products 72a 90 5-2-6 Typical procedure (TP-6) for the preparation of intermediate 73 90 5-2-7 Typical procedure (TP-7) for the preparation of product 76 90 5-2-8 Typical procedure (TP-8) for the preparation of products 81 91 5-2-9 Typical procedure (TP-9) for the preparation of products 83 91 5-2-10 Typical procedure (TP-10) for the preparation of products 85 92 5-2-11 Typical procedure (TP-11) for the preparation of products 86b 92 5-2-12 Typical procedure (TP-12) for the preparation of products 88 93 5-2-13 Typical procedure (TP-13) for the preparation of products 89a 93 5-2-14 Typical procedure (TP-14) for the preparation of products 90a 94 5-2-15 Typical procedure (TP-15) for the preparation of products 91 94 5-2-16 Typical procedure (TP-16) for the preparation of starting materials 99 95 5-2-17 Typical procedure (TP-17) for the preparation of products 100 96 5-2-18 Typical procedure (TP-18) for the preparation of starting materials 102 96 5-2-19 Typical procedure (TP-19) for the preparation of products 104 97 5-2-20 Typical procedure (TP-20) for the preparation of starting materials 108 97 5-2-21 Typical procedure (TP-21) for the preparation of products 109 98 5-3 光譜數據 99 5-3-1 Experimental procedures for the preparation of starting materials 51 99 5-3-2 Experimental procedures for the preparation of starting materials 70 103 5-3-3 Experimentala procedures for the preparation of starting materials 82、92a 106 5-3-4 Experimental procedures for the preparation of products 71、72a、73、76 117 5-3-5 Experimental procedures for the preparation of products 81 124 5-3-6 Experimental procedures for the preparation of products 83 141 5-3-7 Experimental procedures for the preparation of products 85、86b 155 5-3-8 Experimental procedures for the preparation of products 88、89a、90a 166 5-3-9 Experimental proceduresfor the preparation of products 91、94a 176 5-3-10 Experimental procedures for the preparation of 99、100、102、104、108、109 190 5-4 X-ray 晶體繞射數據 196 5-4-1 X-ray crystallographic data for - Wittig products 196 5-4-2 X-ray crystallographic data for - Wittig products 201 5-4-3 X-ray crystallographic data for - Beta acylation products 207 5-5 NMR光譜數據 209 5-5-1 Spectrum A – 1,3-indandione alkylidene derivatives 51 209 5-5-2 Spectrum C – 1,3-indandione alkylidene derivatives 82、92a 220 5-5-4 Spectrum D – Products 71、72a、73、76 232 5-5-4 Spectrum E – Wittig products 81 240 5-5-6 Spectrum F – Wittig products 83 260 5-5-7 Spectrum G – Wittig products 85、86b 288 5-5-8 Spectrum H – β-acylation products 88、89a、90a 310 5-5-9 Spectrum I – β-acylation products 91, 94a 330 5-5-10 Spectrum L – Future work 346 6 參考文獻 353 附件一 355

    1. Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Chem. Rev. 2018, 118, 3752– 3832.
    2. Lenci, E.; Guarna, A.; Trabocchi, A. Molecules 2014, 19, 16506-16528.
    3. Lee, Y.-T.; Jang, Y.-J.; Syu, S.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Commun. 2012, 48, 8135-8137.
    4. Wu, Z.-Z.; Jang, Y.-J.; Lee, C.-J.; Lee, Y.-T.; Lin, W. Org. Biomol. Chem. 2013, 11 , 5156-5161.
    5. Khairnar, P.; Wu, C.-Y.; Lin, Y.-F.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Org. Lett. 2020, 22, 4760-4765.
    6. Wang, M.; Tseng, P.-Y.; Chi, W.-J.; Suresh, S.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Adv. Synth.Catal. 2020, 362, 3407–3410.
    7. Liou, Y.-C.; Karanam, P.; Jang, Y.-J.; Lin, W. Org. Lett. 2019, 21, 8008 -8012.
    8. Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672.
    9. Friedel, C.; Crafts, J.-M. Compt. Rend. 1877, 84, 1392-1395.
    10. Feng, T.; Wang, S.; Liu, Y.; Liu, S.; Qiu, Y. Angew. Chem., Int. Ed., 2022, 61 , e202115178.
    11. Jeng, W.-C.; Chien, P.-C.; Vagh, S.; Edukondalu, A.; Lin, W. Synthesis 2021, 53, 4409-4418.
    12. Khairnar, P.; Su, Y.-H.; Chen, Y.-C.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Org. Lett. 2020, 22, 6868-6872.
    13. Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304-5306.
    14. Das, S. New J. Chem., 2020, 44, 17148-17176.
    15. Chen, Y.-R.; Ganapuram, M. R.; Hsieh, K.-H.; Chen, K.-H.; Karanam, P.; Vagh, S. S.; Liou, Y.-C.; Lin, W. Chem. Commun. 2018, 54 , 12702-12705.
    16. Shkoor, M.; Bayari, R. Synlett 2021 32, 795-799.
    17. Yu, J. K.; Chien, H. W.; Lin, Y. J.; Karanam, P.; Chen, Y. H.; Lin, W. Chem. Commun. 2018, 54 , 9921-9924.
    18. S. Nattel, M.; Talajic, B.; Fermini, D.; Roy J. Cardiovasc. Electrophysiol. 1992, 3 , 266-280.
    19. Quetglas-Llabrés, M.M.; Quispe, C.; Herrera-Bravo, J.; Catarino, M.D.; Pereira, O.R.; Cardoso, S.M.; Dua, K.; Chellappan, D.K.; Pabreja, K.; Satija, S.; Mehta, M.; Sureda, A.; Martorell, M.; Satmbekova, D.; Yeskaliyeva, B.; Sharifi-Rad, J.; Rasool, N.; Butnariu, M.; Bagiu, I.C.; Bagiu, R.V.; Calina, D.; Cho, W.C. Oxid Med Cell Longev. 2022 2022, 8615242.
    20. Lampronti, I.; Bianchi, N.; Borgatti, M.; Fibach, E.; Prus, E.; Gambari, R. Eur J Haematol 2003., 71, 189-198.
    21. Kumar, M.-P.; Liu, R.-S. J. Org. Chem. 2006, 71, 4951–4955.
    22. Anxionnat, B.; Gomez Pardo, D.; Ricci, G.; Rossen, K.; Cossy, J. Org. Lett. 2013, 15, 3876–3879.
    23. Xie, Y.; Yu, C.; Que, Y.; Li, T.; Wang, Y.; Lu, Y.; Wang, W.; Shen, S.; Yao, C. Org. Biomol. Chem. 2016, 14, 6463−6469.
    24. Ma, Y.-H.; He, X.-Y.; Wang, L.; Yang, Q.-Q. J. Org. Chem. 2022, 87, 11852–11856.
    25. Yang, Y.; Ni, F.; Shu, W.-M.; Wu, A.-X. Tetrahedron 2014, 70, 6733e6741.

    無法下載圖示 電子全文延後公開
    2029/07/23
    QR CODE