簡易檢索 / 詳目顯示

研究生: 蔡孟然
Tsai, Meng-Jan
論文名稱: 可攜式氣相層析儀應用於工業製程及排放物監控之研究
The Applications of Portable GC on Industrial Processes and Emission Monitoring
指導教授: 呂家榮
Lu, Chia-Jung
口試委員: 林震煌
Lin, Cheng-Huang
劉茂煌
Liu, Mao-Huang
呂家榮
Lu, Chia-Jung
口試日期: 2022/06/13
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 121
中文關鍵詞: 可攜式氣相層析儀揮發性有機物吹氣捕捉法超吸水聚合物
英文關鍵詞: portable gas chromatograph, volatile organic compounds, purge and trap, superabsorbent polymers
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200939
論文種類: 學術論文
相關次數: 點閱:59下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗室自行開發、組裝的可攜式氣相層析儀,搭配桌上型氣相層析質譜儀,對工業製程排放之揮發性有機物(VOCs)進行分析。工業製程產生的揮發性有機物存在於作業場域環境、排放廢水甚至原料及產品等,必須透過合適的樣品前處理方法進行採樣分析。因此本篇研究將分為三個部分,第一部份,針對工業場所逸散之氣體VOCs使用氣袋配製,挑選工業常見十一種VOCs進行儀器性能測試,當中十種VOCs之偵測下限低於1 ppb;第二部份,為水中揮發性有機物之研究,選擇三種半導體製程常用溶劑,使用吹氣捕捉法進行採樣,並根據理論吹氣曲線之基礎,對水中低溶解度及高溶解度之VOCs使用不同定量方法,並設計活性碳過濾管模擬半導體製程廢水處理;第三部份,針對超吸水聚合物產品進行分析,以頂空法採樣,發現超吸水聚合物在吸水過後,有三種化合物之濃度增加為原始數百甚至數千倍以上,推測是造成異味的主因,綜合上述結果,建立以可攜式氣相層析儀為工具,達成快速連續偵測工業製程及排放物監控之系統。

    This research is about a portable gas chromatograph developed and assembled by our laboratory combined with a desktop gas chromatography mass spectrometer to analyze the volatile organic compounds (VOCs) emitted from industrial processes. VOCs from industrial processes exist in workplace environment, wastewater and even raw materials and products, and must be sampled and analyzed through appropriate sample pretreatment methods. Therefore, this research will be divided into three parts. In the first part, we selected 11 common VOC vapors using sampling bag for instrumental performance test, and the detection limit of 10 VOCs was lower than 1 ppb. The second part is the study of VOCs in water, we analyzed 3 commonly used solvents in the semiconductor industry with the purge and trap method, based on the theoretical purge curve, different quantification methods were used for VOCs with low and high solubility respectively, moreover, the activated carbon filter was designed to simulate the wastewater treatment. The last part is about olfactory analysis of superabsorbent polymers, we found that the concentration of three main compounds increased hundreds or even thousands of times after water absorption, which was inferred to the main cause of the unacceptable odor. To sum up, we hope to use the portable gas chromatograph as a tool to establish a system for rapid and continuous analysis on industrial processes and emission monitoring.

    第一章 緒論 1 1.1 前言 1 1.2 揮發性有機物濃縮概念 3 1.2.1 吸附方法 3 1.2.2 吸附劑種類 4 1.3 微型氣相層析儀 6 1.3.1 文獻回顧 6 1.3.2 層析管柱類別 10 1.3.3 氣體偵測器類別 12 1.4 水中揮發性有機物 15 1.4.1 簡介 15 1.4.2 樣品濃縮方法 16 1.4.3 吹氣捕捉法理論 19 1.5 超吸水性聚合物 22 1.6 研究架構圖 24 第二章 實驗部分 25 2.1 實驗藥品與器材 25 2.1.1 實驗藥品 25 2.1.2 實驗儀器與器材 27 2.2 前濃縮-六向閥系統 29 2.2.1 六向閥運作 29 2.2.2 前濃縮管製作 31 2.3 可攜式氣相層析儀 34 2.3.1 硬體介紹與流道設計 35 2.3.2 電路設計 38 2.3.3 LabVIEW程式控制 45 2.4 氣相層析-質譜儀 47 2.4.1 採樣/進樣系統 47 2.4.2 離子碎片圖比對程式 52 2.5 採樣方法 55 2.5.1 吹氣捕捉法(Purge and Trap) 55 2.5.2 頂空採樣法 57 第三章 結果與討論 58 3.1 可攜式氣相層析儀性能測試 58 3.1.1 十一種工業製程常見VOCs 58 3.1.2 十一種VOCs之校正曲線 62 3.1.3 偵測下限 66 3.1.4 再現性/穩定性測試 68 3.2 水中揮發性有機物 71 3.2.1 水中VOCs Purge & Trap規則 71 3.2.2 Toluene/TCE校正曲線 80 3.2.3 Isopropanol校正曲線 82 3.2.4 活性碳吸附管實驗 83 3.3 SAP 超吸水聚合物氣味分析 86 3.3.1 SAP粉末異味來源 86 3.3.2 SAP粉末成分鑑定 92 3.3.3 可攜式氣相層析儀應用於SAP粉末 97 3.3.4 SAP粉吸水前後差異 101 第四章 結論 106 附錄 108 參考文獻 116

    1. 空氣污染排放清冊. 行政院環保署, 2019.
    2. 謝祝欽; 蔡俊鴻. 固定污染源揮發性有機物(VOC)收費可行性. 行政院環保署, 2001.
    3. 劉希平, VOC 自廠排放係數建立之探討與建議. 工業污染防治 2008, (106), 111-137.
    4. 曾佩如; 朱珮芸; 傅強; 陳怡妃; 賴宜弘; 蔡志賢; 洪珮瑜. 降低移動污染源管理措施蒐集與彙析. 交通部運輸研究所, 2018.
    5. 張瑞琪. 高科技產業高沸點製程廢氣調查技術研究. 國立交通大學碩士論文, 2010.
    6. Chein, H.; Chen, T. M., Emission characteristics of volatile organic compounds from semiconductor manufacturing. J. Air Waste Manage. Assoc. 2003, 53 (8), 1029-36.
    7. Chang, T. Y.; Lin, S. J.; Shie, R. H.; Tsai, S. W.; Hsu, H. T.; Tsai, C. T.; Kuo, H. W.; Chiang, C. F.; Lai, J. S., Characterization of volatile organic compounds in the vicinity of an optoelectronics industrial park in Taiwan. J. Air Waste Manage. Assoc. 2010, 60 (1), 55-62.
    8. Method for the Determination of Volatile Organic Compounds in Ambient Air Using Tenax® Adsorption and Gas Chromatography/Mass Spectrometry (GC/MS). U.S. Environmental Protection Agency: Washington,DC, 1984.
    9. Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography. U.S. Environmental Protection Agency: Washington,DC, 1999.
    10. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS). U.S. Environmental Protection Agency: Washington,DC, 1999.
    11. Dettmer, K.; Engewald, W., Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal. Bioanal. Chem. 2002, 373 (6), 490-500.
    12. Matisová, E.; Škrabáková, S., Carbon sorbents and their utilization for the preconcentration of organic pollutants in environmental samples. J. Chromatogr. A 1995, 707 (2), 145-179.
    13. Camel, V.; Caude, M., Trace enrichment methods for the determination of organic pollutants in ambient air. J. Chromatogr. A 1995, 710 (1), 3-19.
    14. Nún˜ez, A. J.; Gonza´lez, L. F.; Jana´k, J., Pre-concentration of headspace volatiles for trace organic analysis by gas chromatography. J. Chromatogr. A 1984, 300, 127-162.
    15. Lu, C.-J.; Zellers, E. T., A Dual-Adsorbent Preconcentrator for a Portable Indoor-VOC Microsensor System. Anal. Chem. 2001, 73 (14), 3449-3457.
    16. Regmi, B. P.; Agah, M., Micro Gas Chromatography: An Overview of Critical Components and Their Integration. Anal. Chem. 2018, 90 (22), 13133-13150.
    17. Terry, S. C.; Jerman, J. H.; Angell, J. B., A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices 1979, 26, 1880-1886.
    18. Reston, R. R.; Kolesar, E. S., Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. I. Design, fabrication, and integration of the gas chromatography system. J. Microelectromech. Syst. 1994, 3 (4), 134-146.
    19. Kolesar, E. S.; Reston, R. R., Silicon-micromachined gas chromatography system used to separate and detect ammonia and nitrogen dioxide. II. Evaluation, analysis, and theoretical modeling of the gas chromatography system. J. Microelectromech. Syst. 1994, 3 (4), 147-154.
    20. Lu, C. J.; Steinecker, W. H.; Tian, W. C.; Oborny, M. C.; Nichols, J. M.; Agah, M.; Potkay, J. A.; Chan, H. K.; Driscoll, J.; Sacks, R. D.; Wise, K. D.; Pang, S. W.; Zellers, E. T., First-generation hybrid MEMS gas chromatograph. Lab Chip 2005, 5 (10), 1123-31.
    21. Kim, S. K.; Chang, H.; Zellers, E. T., Microfabricated Gas Chromatograph for the Selective Determination of Trichloroethylene Vapor at Sub-Parts-Per-Billion Concentrations in Complex Mixtures. Anal. Chem. 2011, 83 (18), 7198-7206.
    22. Akbar, M.; Restaino, M.; Agah, M., Chip-scale gas chromatography: From injection through detection. Microsyst. Nanoeng. 2015, 1 (1), 15039.
    23. Bartle, K. D.; Myers, P., History of gas chromatography. TrAC, Trends Anal. Chem. 2002, 21 (9), 547-557.
    24. The Cross Section of a Capillary GC Column. https://www.selectscience.net/application-articles/how-to-buy-gc-columns/?artid=46642.
    25. Zimmermann, S.; Wischhusen, S.; Müller, J., Micro flame ionization detector and micro flame spectrometer. Sens. Actuators B Chem. 2000, 63 (3), 159-166.
    26. Wang, J.; Wang, H.; Duan, C.; Guan, Y., Micro-flame ionization detector with a novel structure for portable gas chromatograph. Talanta 2010, 82 (3), 1022-1026.
    27. Zhu, H.; Zhou, M.; Lee, J.; Nidetz, R.; Kurabayashi, K.; Fan, X., Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection. Anal. Chem. 2016, 88 (17), 8780-6.
    28. Akbar, M.; Shakeel, H.; Agah, M., GC-on-chip: integrated column and photoionization detector. Lab Chip 2015, 15 (7), 1748-1758.
    29. Kaanta, B. C.; Chen, H.; Lambertus, G.; Steinecker, W. H.; Zhdaneev, O.; Zhang, X., High Sensitivity Micro-Thermal Conductivity Detector for Gas Chromatography. 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems 2009, 264-267.
    30. Kaanta, B. C.; Chen, H.; Zhang, X., A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector. J. Micromech. Microeng. 2010, 20 (5), 055016.
    31. Poole, C. F., The electron-capture detector in capillary column gas chromatography. J. High. Resolut. Chromatogr. 1982, 5 (9), 454-471.
    32. Cai, Q.-Y.; Zellers, E. T., Dual-Chemiresistor GC Detector Employing Monolayer-Protected Metal Nanocluster Interfaces. Anal. Chem. 2002, 74 (14), 3533-3539.
    33. Länge, K., Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review. Sensors 2019, 19 (24).
    34. 陳玫菁. 表面聲波氣體感測器應用於低濃度氨氣偵測與集群分析辨識. 國立清華大學碩士論文, 2010.
    35. Rowe, B. L.; Toccalino, P. L.; Moran, M. J.; Zogorski, J. S.; Price, C. V., Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States. Environ. Health Perspect. 2007, 115 (11), 1539-46.
    36. Liu, H.-W.; Liu, Y.-T.; Wu, B.-Z.; Nian, H.-C.; Chen, H.-J.; Chiu, K.-H.; Lo, J.-G., Process sampling module coupled with purge and trap–GC–FID for in situ auto-monitoring of volatile organic compounds in wastewater. Talanta 2009, 80 (2), 903-908.
    37. Chary, N. S.; Fernandez-Alba, A. R., Determination of volatile organic compounds in drinking and environmental waters. Trends Anal. Chem. 2012, 32, 60-75.
    38. Ruiz-Bevia, F.; Fernandez-Torres, M. J.; Blasco-Alemany, M. P., Purge efficiency in the determination of trihalomethanes in water by purge-and-trap gas chromatography. Anal. Chim. Acta 2009, 632 (2), 304-314.
    39. Campillo, N.; Viñas, P.; López-García, I.; Aguinaga, N.; Hernández-Córdoba, M., Purge-and-trap capillary gas chromatography with atomic emission detection for volatile halogenated organic compounds determination in waters and beverages. J. Chromatogr. A 2004, 1035 (1), 1-8.
    40. Pecoraino, G.; Scalici, L.; Avellone, G.; Ceraulo, L.; Favara, R.; Candela, E. G.; Provenzano, M. C.; Scaletta, C., Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS). Water Res. 2008, 42 (14), 3563-77.
    41. Mateo-Vivaracho, L.; Ferreira, V.; Cacho, J., Automated analysis of 2-methyl-3-furanthiol and 3-mercaptohexyl acetate at ng L(-1) level by headspace solid-phase microextracion with on-fibre derivatisation and gas chromatography-negative chemical ionization mass spectrometric determination. J. Chromatogr. A 2006, 1121 (1), 1-9.
    42. Larroque, V.; Desauziers, V.; Mocho, P., Development of a solid phase microextraction (SPME) method for the sampling of VOC traces in indoor air. J. Environ. Monit. 2006, 8 (1), 106-11.
    43. Schmidt, K.; Podmore, I., Solid Phase Microextraction (SPME) Method Development in Analysis of Volatile Organic Compounds (VOCS) as Potential Biomarkers of Cancer. J. mol. biomark. diagn. 2015, 06 (06).
    44. Zimmermann, J.; Wanner, P.; Hunkeler, D., Compound-specific carbon isotope analysis of volatile organic compounds in complex soil extracts using purge and trap concentration coupled to heart-cutting two-dimensional gas chromatography–isotope ratio mass spectrometry. J. Chromatogr. A 2021, 1655, 462480.
    45. Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M., Environmental organic chemistry. John Wiley & Sons: 2005.
    46. Meylan, W. M.; Howard, P. H., Bond contribution method for estimating henry's law constants. Environ. Toxicol. Chem. 1991, 10, 1283-1293.
    47. Zhou, M.; Lee, J.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X., A fully automated portable gas chromatography system for sensitive and rapid quantification of volatile organic compounds in water. RSC Adv. 2016, 6 (55), 49416-49424.
    48. Mukerabigwi, J. F.; Lei, S.; Fan, L.; Wang, H.; Luo, S.; Ma, X.; Qin, J.; Huang, X.; Cao, Y., Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC Adv. 2016, 6 (38), 31607-31618.
    49. Chang, L.; Xu, L.; Liu, Y.; Qiu, D., Superabsorbent polymers used for agricultural water retention. Polym. Test. 2021, 94.
    50. Supare, K.; Mahanwar, P. A., Starch-derived superabsorbent polymers in agriculture applications: an overview. Polym. Bull. 2021.
    51. Noreen, A.; Zia, K. M.; Tabasum, S.; Khalid, S.; Shareef, R., A review on grafting of hydroxyethylcellulose for versatile applications. Int. J. Biol. Macromol. 2020, 150, 289-303.
    52. Chang, C.; Duan, B.; Cai, J.; Zhang, L., Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 2010, 46 (1), 92-100.
    53. Wei, J.; Yang, H.; Cao, H.; Tan, T., Using polyaspartic acid hydro-gel as water retaining agent and its effect on plants under drought stress. Saudi Journal of Biological Sciences 2016, 23 (5), 654-9.
    54. Maeno, S.; Eddy, C. L.; Rodriguez, P. A., Identification of compounds responsible for an off-odor in wet polyacrylate superabsorbent polymers. J. Chromatogr. A 1999, 849 (1), 217-224.
    55. National Primary Drinking Water Regulations. U.S.EPA, 2009.
    56. Yoshio, Y.; Nagata, E., Measurement of Odor Threshold by Triangular Odor Bag Method. 2003.

    下載圖示
    QR CODE