簡易檢索 / 詳目顯示

研究生: 吳冠履
Wu, Kuan-Lu
論文名稱: 利用SWATH質譜技術尋找小鼠肝臟中受聚苯乙烯塑膠微粒誘導之差異性代謝體
Differential Metabolomics for Mouse Liver Induced by Microplastics Utilizing SWATH-based Mass Spectrometry
指導教授: 陳頌方
Chen, Sung-Fang
口試委員: 梁恭豪
Liang, Kung-Hao
陳百昇
Chen, Pai-Sheng
蕭伊倫
Hsiao, I-Lun
陳頌方
Chen, Sung-Fang
口試日期: 2023/07/17
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 151
中文關鍵詞: 代謝體學塑膠微粒液相層析-質譜
英文關鍵詞: Metabolomics, Microplastics, LC-MS
研究方法: 實驗設計法主題分析
DOI URL: http://doi.org/10.6345/NTNU202301128
論文種類: 學術論文
相關次數: 點閱:94下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,塑膠微粒污染引起了國際的關注。 有報導稱塑膠微粒可能對人類產生肝毒性。代謝體學是評估此類污染物威脅的有力策略,可以更直接地反映其表型。 在本研究中,我們應用液相層析-串聯質譜 (LC-MS/MS) 和SWATH 數據獲取模式評估暴露於聚苯乙烯塑膠微粒的小鼠肝臟差異性代謝體學。在差異性代謝體學分析之前, 8 種不同 LC 條件的覆蓋範圍透過使用混合樣品,並使用代謝物標準混合物評估兩個親水相互作用液相層析 (HILIC) 柱的定量性能。結果表明,Amide管柱在ESI(+)和ESI(-)模式下最適合小分子分析,而流動相中含有0.1% FA的PFP柱最適合ESI(-)模式的磷脂分析,總共能夠鑑定923種代謝物。 LC-SWATH-MS 發現了 71 種差異代謝物,並且發現嘌呤和嘧啶代謝、氨基酸代謝和磷脂代謝受到聚苯乙烯塑膠微粒的干擾。這項研究提供了一個通用的代謝體學圖譜,可以揭示聚苯乙烯塑膠微粒暴露對小鼠肝臟的影響,這是血清化學分析和組織學分析無法給出的。

    Microplastic (MP) pollution has gained international attention in recent years. It has also been reported that MPs could induce hepatotoxic in humans. Metabolomics is a powerful strategy for evaluating the threat of such pollutants, which can reflect the phenotype in a more direct way. In this study, we applied liquid chromatography-tandem mass spectrometry (LC-MS/MS) with sequential window acquisition of all theoretical mass spectra (SWATH) data acquisition mode to assess the differential metabolomics in mouse liver exposed to polystyrene MPs. Before differential metabolomics analysis, the coverage of 8 different chromatographic conditions was evaluated using the pooled sample, and the quantitative performance of the two hydrophilic interaction liquid chromatography (HILIC) columns was evaluated using metabolite standard mixtures. The results showed that the amide column was the best for small molecule analysis in the ESI(+) and the ESI(-) mode and the PFP column with 0.1% FA in the mobile phase was the best for phospholipids analysis in the ESI(-) mode. By combining the selected conditions, our method can identify 923 metabolites in summary. There were 70 differential metabolites discovered by the LC-SWATH-MS and the purine and pyrimidine metabolism, amino acid metabolism, and phospholipid metabolism were found to be disturbed by the PS-MPs. This study provides a universal metabolomics profile that can reveal the effects of PS-MPs exposure on the mouse liver that cannot be given by serum chemical analysis and histological analysis.

    Acknowledgement i 中文摘要 ii Abstract iii Table of Content iv List of Figures vi List of Tables ix Abbreviations 1 Chapter 1. Introductions 4 1.1. Microplastic: An Environmental Threat 4 1.2. Metabolomics: Link Between Genotype to Phenotype 7 1.2.1. Targeted Metabolomics 9 1.2.2. Untargeted metabolomics 11 1.3. Data Acquisition Mode of Untargeted Metabolomics 12 1.3.1. DDA: The Most Commonly Used Data Acquisition Mode 13 1.3.2. DIA: The Potential Data Acquisition Mode 14 1.4. The Importance of LC Condition 17 1.5. Motivation 18 Chapter 2. Materials and Methods 19 2.1. Experiment Procedure 19 2.2. Materials 20 2.2.1. Chemicals and Reagents 20 2.2.2. Instruments 22 2.3. Animal Treatment and Sample Preparation 23 2.3.1. Animal Treatment 23 2.3.2. Metabolite Extraction 24 2.4. Chromatographic Conditions Optimization 25 2.5. Evaluating the Quantitation Reliability of SWATH 28 2.5.1. Standard Mixture Preparation 28 2.5.2. LC-SWATH-MS Analysis 28 2.6. Differential Metabolomics Analysis Using SWATH Techniques 29 2.7. Data Processing 30 2.7.1. Data Processing of DDA 30 2.7.2. Data Processing of SWATH 30 2.7.3. Statistical Analysis 32 Chapter 3. Results and Discussion 33 3.1. Evaluating the Toxicity of PS-MPs to Male BALB/c Mice 33 3.1.1. Body Weight Changes of the Male BALB/c Mice 33 3.1.2. Serum Chemical Analyses 35 3.1.3. Histological Analysis 37 3.2. Chromatographic Conditions Optimization 38 3.2.1. ESI(+) mode 40 3.2.2. ESI(-) mode 49 3.2.3. The Quantitative Performance of LC-SWATH-MS 58 3.3. Differential Metabolomics Analysis Using SWATH Techniques 68 3.3.1. Comparison of DDA and SWATH 71 3.3.2. Differential Metabolites in Amide ESI(+) 72 3.3.3. Differential Metabolite in Amide ESI(-) 77 3.3.4. Differential Metabolite in PFP (0.1% FA) ESI(-) 82 3.3.5. Summary 87 3.4. Pathway Analysis and Literature Comparison 93 3.5. Integration of Metabolomics and Proteomics 100 Chapter 4. Conclusions and Future Innovations 102 Chapter 5. References 105 Supporting Information 115

    (1) Arthur, C.; Baker, J. E.; Bamford, H. A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA. 2009.
    (2) Ni, Z.; Tan, L.; Wang, J.; Chen, Y.; Zhang, N.; Meng, F.; Wang, J. Toxic effects of pristine and aged polystyrene and their leachate on marine microalgae Skeletonema costatum. Science of The Total Environment 2023, 857, 159614.
    (3) Alimi, O. S.; Claveau-Mallet, D.; Lapointe, M.; Biu, T.; Liu, L.; Hernandez, L. M.; Bayen, S.; Tufenkji, N. Effects of Weathering on the Properties and Fate of Secondary Microplastics from a Polystyrene Single-Use Cup. Journal of Hazardous Materials 2023, 131855.
    (4) Fotopoulou, K. N.; Karapanagioti, H. K. Degradation of Various Plastics in the Environment. In Hazardous Chemicals Associated with Plastics in the Marine Environment, Takada, H., Karapanagioti, H. K. Eds.; Springer International Publishing, 2019; pp 71-92.
    (5) Park, T.-J.; Lee, S.-H.; Lee, M.-S.; Lee, J.-K.; Lee, S.-H.; Zoh, K.-D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Science of The Total Environment 2020, 708, 134535.
    (6) Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin 2013, 77 (1), 177-182.
    (7) Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicology and Environmental Safety 2020, 189, 109913.
    (8) Yao, Y.; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of microplastics in indoor and ambient air in northern New Jersey. Environmental Research 2022, 207, 112142.
    (9) Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science & Health 2022, 25, 100311.
    (10) Sun, Q.; Li, J.; Wang, C.; Chen, A.; You, Y.; Yang, S.; Liu, H.; Jiang, G.; Wu, Y.; Li, Y. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Frontiers of Environmental Science & Engineering 2021, 16 (1), 1.
    (11) Li, Z.; Chao, M.; He, X.; Lan, X.; Tian, C.; Feng, C.; Shen, Z. Microplastic bioaccumulation in estuary-caught fishery resource. Environmental Pollution 2022, 306, 119392.
    (12) Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology 2016, 50 (7), 4054-4060.
    (13) Qiao, R.; Deng, Y.; Zhang, S.; Wolosker, M. B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 2019, 236, 124334.
    (14) Meng, X.; Zhang, J.; Wang, W.; Gonzalez-Gil, G.; Vrouwenvelder, J. S.; Li, Z. Effects of nano- and microplastics on kidney: Physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere 2022, 288, 132631.
    (15) Ma, H.; Pu, S.; Liu, S.; Bai, Y.; Mandal, S.; Xing, B. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environmental Pollution 2020, 261, 114089.
    (16) Wang, C.; Zhao, J.; Xing, B. Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials 2021, 407, 124357.
    (17) Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports 2017, 7 (1), 46687.
    (18) Lee, S.; Kang, K.-K.; Sung, S.-E.; Choi, J.-H.; Sung, M.; Seong, K.-Y.; Lee, S.; Yang, S. Y.; Seo, M.-S.; Kim, K. Toxicity Study and Quantitative Evaluation of Polyethylene Microplastics in ICR Mice. In Polymers, 2022, 14(3), 402.
    (19) Shin, H.; Jeong, C.-B. Metabolism deficiency and oxidative stress induced by plastic particles in the rotifer Brachionus plicatilis: Common and distinct phenotypic and transcriptomic responses to nano- and microplastics. Marine Pollution Bulletin 2022, 182, 113981.
    (20) El-Shahawi, M. S.; Hamza, A.; Bashammakh, A. S.; Al-Saggaf, W. T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 2010, 80 (5), 1587-1597.
    (21) Paramitha, D.; Ulum, M. F.; Purnama, A.; Wicaksono, D. H. B.; Noviana, D.; Hermawan, H. 2 - Monitoring degradation products and metal ions in vivo. In Monitoring and Evaluation of Biomaterials and their Performance In Vivo, Narayan, R. J. Ed.; Woodhead Publishing, 2017; pp 19-44.
    (22) Bobori, D. C.; Dimitriadi, A.; Feidantsis, K.; Samiotaki, A.; Fafouti, D.; Sampsonidis, I.; Kalogiannis, S.; Kastrinaki, G.; Lambropoulou, D. A.; Kyzas, G. Z.; et al. Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: Size matters. Science of The Total Environment 2022, 830, 154603.
    (23) Wang, T.; Hu, M.; Xu, G.; Shi, H.; Leung, J. Y. S.; Wang, Y. Microplastic accumulation via trophic transfer: Can a predatory crab counter the adverse effects of microplastics by body defence? Science of The Total Environment 2021, 754, 142099.
    (24) Han, Y.; Shi, W.; Tang, Y.; Zhou, W.; Sun, H.; Zhang, J.; Yan, M.; Hu, L.; Liu, G. Microplastics and bisphenol A hamper gonadal development of whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism and disrupting hormone regulation. Science of The Total Environment 2022, 810, 152354.
    (25) Chen, H.; Hua, X.; Li, H.; Wang, C.; Dang, Y.; Ding, P.; Yu, Y. Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans. Chemosphere 2021, 272, 129642.
    (26) Kim, J.-H.; Yu, Y.-B.; Choi, J.-H. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. Journal of Hazardous Materials 2021, 413, 125423.
    (27) de Haan, W. P.; Sanchez-Vidal, A.; Canals, M. Floating microplastics and aggregate formation in the Western Mediterranean Sea. Marine Pollution Bulletin 2019, 140, 523-535.
    (28) Kik, K.; Bukowska, B.; Sicińska, P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution 2020, 262, 114297.
    (29) Zheng, H.; Wang, J.; Wei, X.; Chang, L.; Liu, S. Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis. Science of The Total Environment 2021, 750, 143085.
    (30) Luo, T.; Zhang, Y.; Wang, C.; Wang, X.; Zhou, J.; Shen, M.; Zhao, Y.; Fu, Z.; Jin, Y. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environmental Pollution 2019, 255, 113122.
    (31) Manchester, M.; Anand, A. Chapter Two - Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. In Advances in Virus Research, Kielian, M., Mettenleiter, T. C., Roossinck, M. J. Eds.; Vol. 98; Academic Press, 2017; pp 57-81.
    (32) Chen, Y.; Li, E.-M.; Xu, L.-Y. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Metabolites, 2022, 12(4), 357.
    (33) Tiziani, S.; Lopes, V.; Günther, U. L. Early Stage Diagnosis of Oral Cancer Using 1H NMR–Based Metabolomics. Neoplasia 2009, 11 (3), 269-IN210.
    (34) Cappello, T.; De Marco, G.; Oliveri Conti, G.; Giannetto, A.; Ferrante, M.; Mauceri, A.; Maisano, M. Time-dependent metabolic disorders induced by short-term exposure to polystyrene microplastics in the Mediterranean mussel Mytilus galloprovincialis. Ecotoxicology and Environmental Safety 2021, 209, 111780.
    (35) Li, D.-W.; Leggett, A.; Bruschweiler-Li, L.; Brüschweiler, R. COLMARq: A Web Server for 2D NMR Peak Picking and Quantitative Comparative Analysis of Cohorts of Metabolomics Samples. Analytical Chemistry 2022, 94 (24), 8674-8682.
    (36) Tsedilin, A. M.; Fakhrutdinov, A. N.; Eremin, D. B.; Zalesskiy, S. S.; Chizhov, A. O.; Kolotyrkina, N. G.; Ananikov, V. P. How sensitive and accurate are routine NMR and MS measurements? Mendeleev Communications 2015, 25 (6), 454-456.
    (37) Beale, D. J.; Pinu, F. R.; Kouremenos, K. A.; Poojary, M. M.; Narayana, V. K.; Boughton, B. A.; Kanojia, K.; Dayalan, S.; Jones, O. A. H.; Dias, D. A. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 2018, 14 (11), 152.
    (38) Khakimov, B.; Motawia, M. S.; Bak, S.; Engelsen, S. B. The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography–mass spectrometry based metabolomics. Analytical and Bioanalytical Chemistry 2013, 405 (28), 9193-9205.
    (39) Chen, J.; Chen, G.; Peng, H.; Qi, L.; Zhang, D.; Nie, Q.; Zhang, X.; Luo, W. Microplastic exposure induces muscle growth but reduces meat quality and muscle physiological function in chickens. Science of The Total Environment 2023, 882, 163305.
    (40) Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Recent and potential developments of biofluid analyses in metabolomics. Journal of Proteomics 2012, 75 (4), 1079-1088.
    (41) Wu, K.-L.; Liao, W.-R.; Lin, W.-C.; Chen, S.-F. A Review of Liquid Chromatography-Mass Spectrometry Strategies for the Analyses of Metabolomics Induced by Microplastics. Separations, 2023, 10(4), 257.
    (42) Deng, P.; Li, X.; Petriello, M. C.; Wang, C.; Morris, A. J.; Hennig, B. Application of metabolomics to characterize environmental pollutant toxicity and disease risks. 2019, 34 (3), 251-259.
    (43) Kondrat, R. W.; McClusky, G. A.; Cooks, R. G. Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Analytical Chemistry 1978, 50 (14), 2017-2021.
    (44) Jiang, P.; Yuan, G.-h.; Jiang, B.-r.; Zhang, J.-y.; Wang, Y.-q.; Lv, H.-j.; Zhang, Z.; Wu, J.-l.; Wu, Q.; Li, L. Effects of microplastics (MPs) and tributyltin (TBT) alone and in combination on bile acids and gut microbiota crosstalk in mice. Ecotoxicology and Environmental Safety 2021, 220, 112345.
    (45) Huang, W.; Wang, X.; Chen, D.; Xu, E. G.; Luo, X.; Zeng, J.; Huan, T.; Li, L.; Wang, Y. Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry. Journal of Hazardous Materials 2021, 417, 126003.
    (46) Duan, Y.; Xiong, D.; Wang, Y.; Zhang, Z.; Li, H.; Dong, H.; Zhang, J. Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach. Science of The Total Environment 2021, 761, 143311.
    (47) Teng, J.; Zhao, J.; Zhu, X.; Shan, E.; Zhang, C.; Zhang, W.; Wang, Q. Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas. Environmental Pollution 2021, 269, 116169.
    (48) Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography–Mass Spectrometry Based Untargeted Metabolomics. Analytical Chemistry 2020, 92 (12), 8072-8080.
    (49) Decaestecker, T. N.; Vande Casteele, S. R.; Wallemacq, P. E.; Van Peteghem, C. H.; Defore, D. L.; Van Bocxlaer, J. F. Information-Dependent Acquisition-Mediated LC−MS/MS Screening Procedure with Semiquantitative Potential. Analytical Chemistry 2004, 76 (21), 6365-6373.
    (50) Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry 2010, 45 (7), 703-714.
    (51) Wishart, D. S.; Feunang, Y. D.; Marcu, A.; Guo, A. C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Research 2018, 46 (D1), D608-D617.
    (52) Guijas, C.; Montenegro-Burke, J. R.; Domingo-Almenara, X.; Palermo, A.; Warth, B.; Hermann, G.; Koellensperger, G.; Huan, T.; Uritboonthai, W.; Aisporna, A. E.; et al. METLIN: A Technology Platform for Identifying Knowns and Unknowns. Analytical Chemistry 2018, 90 (5), 3156-3164.
    (53) Zhang, Y.-K.; Yang, B.-K.; Zhang, C.-N.; Xu, S.-X.; Sun, P. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics. Science of The Total Environment 2022, 850, 157772.
    (54) Liang, Y.; Yang, X.; Wang, Y.; Liu, R.; Gu, H.; Mao, L. Influence of polystyrene microplastics on rotifer (Brachionus calyciflorus) growth, reproduction, and antioxidant responses. Aquatic Ecology 2021, 55 (3), 1097-1111.
    (55) Wang, R.; Yin, Y.; Zhu, Z.-J. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Analytical and Bioanalytical Chemistry 2019, 411 (19), 4349-4357.
    (56) Raetz, M.; Bonner, R.; Hopfgartner, G. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Metabolomics 2020, 16 (6), 71.
    (57) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods 2015, 12 (6), 523-526.
    (58) Yin, Y.; Wang, R.; Cai, Y.; Wang, Z.; Zhu, Z.-J. DecoMetDIA: Deconvolution of Multiplexed MS/MS Spectra for Metabolite Identification in SWATH-MS-Based Untargeted Metabolomics. Analytical Chemistry 2019, 91 (18), 11897-11904.
    (59) Calderón, C.; Sanwald, C.; Schlotterbeck, J.; Drotleff, B.; Lämmerhofer, M. Comparison of simple monophasic versus classical biphasic extraction protocols for comprehensive UHPLC-MS/MS lipidomic analysis of Hela cells. Analytica Chimica Acta 2019, 1048, 66-74..
    (60) Zha, H.; Cai, Y.; Yin, Y.; Wang, Z.; Li, K.; Zhu, Z.-J. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery. Analytical Chemistry 2018, 90 (6), 4062-4070.
    (61) van der Laan, T.; Boom, I.; Maliepaard, J.; Dubbelman, A.-C.; Harms, A. C.; Hankemeier, T. Data-Independent Acquisition for the Quantification and Identification of Metabolites in Plasma. Metabolites, 2020, 10 (12), 514.
    (62) Xiong, Y.; Shi, C.; Zhong, F.; Liu, X.; Yang, P. LC-MS/MS and SWATH based serum metabolomics enables biomarker discovery in pancreatic cancer. Clinica Chimica Acta 2020, 506, 214-221.
    (63) Klont, F.; Stepanović, S.; Kremer, D.; Bonner, R.; Touw, D. J.; Hak, E.; Bakker, S. J. L.; Hopfgartner, G. Untargeted ‘SWATH’ mass spectrometry-based metabolomics for studying chronic and intermittent exposure to xenobiotics in cohort studies. Food and Chemical Toxicology 2022, 165, 113188.
    (64) Mounayar, R.; Morzel, M.; Brignot, H.; Tremblay-Franco, M.; Canlet, C.; Lucchi, G.; Ducoroy, P.; Feron, G.; Neyraud, E. Salivary markers of taste sensitivity to oleic acid: a combined proteomics and metabolomics approach. Metabolomics 2014, 10 (4), 688-696.
    (65) Olfert, M.; Bäurer, S.; Wolter, M.; Buckenmaier, S.; Brito-de la Fuente, E.; Lämmerhofer, M. Comprehensive profiling of conjugated fatty acid isomers and their lipid oxidation products by two-dimensional chiral RP×RP liquid chromatography hyphenated to UV- and SWATH-MS-detection. Analytica Chimica Acta 2022, 1202, 339667.
    (66) Yong, Y.-S.; Chong, E. T. J.; Chen, H.-C.; Lee, P.-C.; Ling, Y. S. A Comparative Study of Pentafluorophenyl and Octadecylsilane Columns in High-throughput Profiling of Biological Fluids. Journal of the Chinese Chemical Society 2017, 64 (6), 699-710,
    (67) Yamamoto, T.; Sato, K.; Yamaguchi, M.; Mitamura, K.; Taga, A. Development of simultaneous quantitative analysis of tricarboxylic acid cycle metabolites to identify specific metabolites in cancer cells by targeted metabolomic approach. Biochemical and Biophysical Research Communications 2021, 584, 53-59.
    (68) Wang, X.; Li, W.; Rasmussen, H. T. Orthogonal method development using hydrophilic interaction chromatography and reversed-phase high-performance liquid chromatography for the determination of pharmaceuticals and impurities. Journal of Chromatography A 2005, 1083 (1), 58-62.
    (69) Dai, Y.; Zhang, H.; Wang, X.; Chen, Y.; Fu, Q.; Jin, Y.; Liang, X. Efficient strategies for preparative separation of iridoid glycosides and flavonoid glycosides from Hedyotis diffusa. Journal of Separation Science 2023, 46 (10), 2300029.
    (70) Elmsjö, A.; Haglöf, J.; Engskog, M. K. R.; Erngren, I.; Nestor, M.; Arvidsson, T.; Pettersson, C. Method selectivity evaluation using the co-feature ratio in LC/MS metabolomics: Comparison of HILIC stationary phase performance for the analysis of plasma, urine and cell extracts. Journal of Chromatography A 2018, 1568, 49-56.
    (71) Xu, M.; Legradi, J.; Leonards, P. Cross platform solutions to improve the zebrafish polar metabolome coverage using LC-QTOF MS: Optimization of separation mechanisms, solvent additives, and resuspension solvents. Talanta 2021, 234, 122688.
    (72) Anderson, B. G.; Raskind, A.; Habra, H.; Kennedy, R. T.; Evans, C. R. Modifying Chromatography Conditions for Improved Unknown Feature Identification in Untargeted Metabolomics. Analytical Chemistry 2021, 93 (48), 15840-15849.
    (73) Spalding, J. L.; Naser, F. J.; Mahieu, N. G.; Johnson, S. L.; Patti, G. J. Trace Phosphate Improves ZIC-pHILIC Peak Shape, Sensitivity, and Coverage for Untargeted Metabolomics. Journal of Proteome Research 2018, 17 (10), 3537-3546.
    (74) Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D. A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research 2021, 49 (W1), W388-W396.
    (75) Wang, Y.-L.; Lee, Y.-H.; Hsu, Y.-H.; Chiu, I. J.; Huang Cathy, C.-Y.; Huang, C.-C.; Chia, Z.-C.; Lee, C.-P.; Lin, Y.-F.; Chiu, H.-W. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environmental Health Perspectives 2021 129 (5), 057003.
    (76) Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; C. Ewald, J.; Fraser, P. D.; Giavalisco, P.; Hall, R. D.; et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods 2021, 18 (7), 747-756.
    (77) Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; A critical review on causes, evaluation, prevention and applications. Talanta 2013, 115, 104-122.
    (78) Gilar, M.; Daly, A. E.; Kele, M.; Neue, U. D.; Gebler, J. C. Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography. Journal of Chromatography A 2004, 1061 (2), 183-192.
    (79) Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. XCMS:  Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry 2006, 78 (3), 779-787.
    (80) Cocchi, M.; Biancolillo, A.; Marini, F. Chapter Ten - Chemometric Methods for Classification and Feature Selection. In Comprehensive Analytical Chemistry, Jaumot, J., Bedia, C., Tauler, R. Eds.; Vol. 82; Elsevier, 2018; pp 265-299.
    (81) Xia, J.; Wishart, D. S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26 (18), 2342-2344.
    (82) Pedley, A. M.; Benkovic, S. J. A New View into the Regulation of Purine Metabolism: The Purinosome. Trends in Biochemical Sciences 2017, 42 (2), 141-154.
    (83) Furuhashi, M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. American Journal of Physiology-Endocrinology and Metabolism 2020, 319 (5), E827-E834.
    (84) Shi, C.; Han, X.; Guo, W.; Wu, Q.; Yang, X.; Wang, Y.; Tang, G.; Wang, S.; Wang, Z.; Liu, Y.; et al. Disturbed Gut-Liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance. Environment International 2022, 164, 107273.
    (85) Kamatani, N.; Jinnah, H. A.; Hennekam, R. C. M.; van Kuilenburg, A. B. P. Purine and Pyrimidine Metabolism. In Reference Module in Biomedical Sciences, Elsevier, 2014.
    (86) Gao, B.; Shi, X.; Li, S.; Xu, W.; Gao, N.; Shan, J.; Shen, W. Size-dependent effects of polystyrene microplastics on gut metagenome and antibiotic resistance in C57BL/6 mice. Ecotoxicology and Environmental Safety 2023, 254, 114737.
    (87) Ye, G.; Zhang, X.; Yan, C.; Lin, Y.; Huang, Q. Polystyrene microplastics induce microbial dysbiosis and dysfunction in surrounding seawater. Environment International 2021, 156, 106724.
    (88) Wang, C.; Hou, M.; Shang, K.; Wang, H.; Wang, J. Microplastics (Polystyrene) Exposure Induces Metabolic Changes in the Liver of Rare Minnow (Gobiocypris rarus). Molecules, 2022, 27(3), 584.
    (89) Wang, P.; Li, Q.-Q.; Hui, J.; Xiang, Q.-Q.; Yan, H.; Chen, L.-Q. Metabolomics reveals the mechanism of polyethylene microplastic toxicity to Daphnia magna. Chemosphere 2022, 307, 135887.
    (90) van der Veen, J. N.; Kennelly, J. P.; Wan, S.; Vance, J. E.; Vance, D. E.; Jacobs, R. L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017, 1859 (9, Part B), 1558-1572.
    (91) Phosphatidylcholine. In Meyler's Side Effects of Drugs (Sixteenth Edition), Aronson, J. K. Ed.; Elsevier, 2016; pp 722-723.
    (92) Calzada, E.; Onguka, O.; Claypool, S. M. Chapter Two - Phosphatidylethanolamine Metabolism in Health and Disease. In International Review of Cell and Molecular Biology, Jeon, K. W. Ed.; Vol. 321; Academic Press, 2016; pp 29-88.
    (93) Mulder, C.; Wahlund, L. O.; Teerlink, T.; Blomberg, M.; Veerhuis, R.; van Kamp, G. J.; Scheltens, P.; Scheffer, P. G. Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. Journal of Neural Transmission 2003, 110 (8), 949-955.
    (94) Kannan, M.; Riekhof, W. R.; Voelker, D. R. Transport of Phosphatidylserine from the Endoplasmic Reticulum to the Site of Phosphatidylserine Decarboxylase2 in Yeast. Traffic 2015, 16 (2), 123-134.
    (95) Ma, X.; Li, X.; Wang, W.; Zhang, M.; Yang, B.; Miao, Z. Phosphatidylserine, inflammation, and central nervous system diseases. Frontiers in Aging Neuroscience 2022, 14, 975176.
    (96) Cao, X.; van Putten, J. P. M.; Wösten, M. M. S. M. Chapter Two - Biological functions of bacterial lysophospholipids. In Advances in Microbial Physiology, Poole, R. K., Kelly, D. J. Eds.; Vol. 82; Academic Press, 2023; pp 129-154.
    (97) Blondeau, N.; Lauritzen, I.; Widmann, C.; Lazdunski, M.; Heurteaux, C. A Potent Protective Role of Lysophospholipids against Global Cerebral Ischemia and Glutamate Excitotoxicity in Neuronal Cultures. Journal of Cerebral Blood Flow & Metabolism 2002, 22 (7), 821-834.
    (98) Ye, G.; Zhang, X.; Liu, X.; Liao, X.; Zhang, H.; Yan, C.; Lin, Y.; Huang, Q. Polystyrene microplastics induce metabolic disturbances in marine medaka (Oryzias melastigmas) liver. Science of The Total Environment 2021, 782, 146885.
    (99) Sanders, T. A. B. 37 - Polyunsaturated Fatty Acid Status in Vegetarians. In Vegetarian and Plant-Based Diets in Health and Disease Prevention, Mariotti, F. Ed.; Academic Press, 2017; pp 667-681.
    (100) Kim, E. J.; Kang, I.-J.; Cho, H. J.; Kim, W. K.; Ha, Y.-L.; Park, J. H. Y. Conjugated Linoleic Acid Downregulates Insulin-Like Growth Factor-I Receptor Levels in HT-29 Human Colon Cancer Cells. The Journal of Nutrition 2003, 133 (8), 2675-2681.
    (101) Tripathi, R. K. P. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. European Journal of Medicinal Chemistry 2020, 188, 111953.
    (102) Jiang, X.; Yang, Y.; Wang, Q.; Liu, N.; Li, M. Seasonal variations and feedback from microplastics and cadmium on soil organisms in agricultural fields. Environment International 2022, 161, 107096.

    下載圖示
    QR CODE