簡易檢索 / 詳目顯示

研究生: 楊黃捷
Hwang-Jye Yang
論文名稱: 利用原子力顯微鏡研究紫外光殺菌之衰亡機制
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 原子力顯微鏡大腸桿菌紫外光
英文關鍵詞: AFM, E. coli, UV
論文種類: 學術論文
相關次數: 點閱:180下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

細菌是許多疾病的成因,由於傳統殺菌方法都有一定的限制,故發展新的殺菌方法是我們的目標。脈衝激發拉曼散射能突破傳統殺菌方法的限制,為殺菌作業提供了一個嶄新的方法。本文除了為脈衝激發拉曼散射殺菌法提供前置作業外,最大的目的在於探討紫外光對細菌的影響。我們將利用原子力顯微鏡觀察大腸桿菌經過紫外光照射後菌體外形的變化,並根據統計結果提出合理的衰亡機制。實驗結果顯示,在時間模式的操作下,幾乎所有的大腸桿菌都有中央塌陷的現象,且隨著照射時間越長,塌陷的深度越深,但菌體的長度越短,我們認為是細胞膜受到破壞的緣故;而隨著照射時間的增加,兩端的峰值會越高,我們則懷疑是膜上電荷重新分配所造成的排斥現象。

Chapter 1 緒論 1 Chapter 2 細菌的形態 5 2.1 微生物的分類 5 2.2 細菌的結構與分類 6 2.2.1 細菌的結構 6 2.2.2 細菌的分類 6 2.3 革蘭氏染色法 7 2.4 大腸桿菌 8 2.4.1 類核 8 2.4.2 細胞質 9 2.4.3 細胞膜 10 2.4.4 周質空間 12 2.4.5 細胞壁 15 2.5 生長曲線 19 Chapter 3 紫外光殺菌 22 3.1 非游離輻射殺菌機制 23 3.1.1 遠紫外光 23 3.1.2 近紫外光 24 3.1.3 可見光 25 3.2 論文回顧 26 3.3 大腸桿菌的製備流程 28 3.3.1 Luria-Bertani與氨苄青黴素的配製 28 3.3.2 大腸桿菌的培養 30 3.4 紫外光的照射與計數 35 Chapter 4 原子力顯微鏡的量測 38 4.1 論文回顧 38 4.2 基本原理 42 4.3 操作模式 43 4.4 樣品的製備與實驗方法 45 4.4.1 基板的製作 45 4.4.2 樣品的製備 45 4.4.3 AFM操作步驟 45 4.4.4 紫外光照射 50 4.5 實驗結果 57 4.5.1 塌陷深度與細胞長度 60 4.5.2 細胞峰值 65 4.5.3 細胞體積 68 4.6 討論 69 4.6.1 塌陷的原因 69 4.6.2 兩端隆起的原因 76 4.7 結論 78 Chapter 5 未來展望 80 附錄A 其他殺菌方法 81 A.1 化學方法 81 A.1.1 醇類 81 A.1.2 氧化劑 82 A.2 物理方法 86 A.2.1 熱 86 A.2.2 輻射 87 A.2.3 超聲波 88 附錄B 拉曼原理 89 參考資料 91

[1] Shen, Y. and N. Bloembergen, Theory of stimulated Brillouin and Raman scattering. Phys. Rev, 1965. 137(6A): p. 1787-1805.
[2] Yan, Y., E. Gamble Jr, and K. Nelson, Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. The Journal of Chemical Physics, 1985. 83: p. 5391.
[3] Wittmann, M., A. Nazarkin, and G. Korn, fs-Pulse synthesis using phase modulation by impulsively excited molecular vibrations. Physical review letters, 2000. 84(24): p. 5508-5511.
[4] Tsen, K., et al., Selective inactivation of micro-organisms with near-infrared femtosecond laser pulses. Journal of Physics: Condensed Matter, 2007. 19: p. 472201.
[5] Tsen, K., et al., Inactivation of viruses with a femtosecond laser via impulsive stimulated Raman scattering. 2008.
[6] Wang, Y., et al., Ultraviolet-light-induced bactericidal mechanism on ZnO single crystals. Chemical communications (Cambridge, England), 2009(44): p. 6783.
[7] 陳頤之等著,2004,微生物學,台北:華騰文化股份有限公司
[8] 蔡文城,2002,微生物學,台北:藝軒圖書出版社
[9] 楊盛行等譯,Lansing M. Prescott, John P. Harley, and Donald A. Klein著,2007,基礎微生物學,台北:藝軒圖書出版社
[10] 李銘亮,2002,微生物生理學,台北:藝軒圖書出版社
[11] 沈萍等著,2003,微生物學,台北:五南圖書出版股份有限公司
[12] 柯勇,2003,現代微生物學,台北:藝軒圖書出版社
[13] 吳俊興等譯,Pollack等著,2005,微生物學實驗,台北:高立圖書有限公司
[14] 王貴譽、張瑞烽,1993,大學微生物學,台北:曉園出版有限公司
[15] 王三郎,2005,應用微生物學,台北:高立圖書有限公司
[16] 謝哲松譯,Thomas D. Brock and Michael T. Madigan著,1995,微生物生物學,台北:國立編譯館
[17] Harris, G., et al., Ultraviolet inactivation of selected bacteria and viruses with photoreactivation of the bacteria. Water research, 1987. 21(6): p. 687-692.
[18] Coohill, T. and J. Sagripanti, Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochemistry and photobiology, 2008. 84(5): p. 1084-1090.
[19] Lage, C., P. Teixeira, and A. Leitao, Non-coherent visible and infrared radiation increase survival to UV (254 nm) in Escherichia coli K12. Journal of Photochemistry and Photobiology B: Biology, 2000. 54(2-3): p. 155-161.
[20] da Silva, A., Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2003. 1643(1-3): p. 95-103.
[21] Mecke, A., et al., Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophysical journal, 2005. 89(6): p. 4043-4050.
[22] Lin, S., et al., Surface ultrastructure of SARS coronavirus revealed by atomic force microscopy. Cellular Microbiology, 2005. 7(12): p. 1763-1770.
[23] Li, A., et al., Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2007. 1768(3): p. 411-418.
[24] Ong, Y., et al., Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir, 1999. 15(8): p. 2719-2725.
[25] Thio, B. and J. Meredith, Quantification of E. coli adhesion to polyamides and polystyrene with atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2008. 65(2): p. 308-312.
[26] 許靜淑,2009,利用掃描探針顯微鏡探測鈷、鎳及鈷鎳複合奈米粒子,國立台灣師範大學物理研究所碩士論文
[27] 邱千鳳,2007,利用掃描探針顯微鏡探測二氧化鈦奈米粒子,國立台灣師範大學物理研究所碩士論文
[28] 吳美月,2004,奈米碳管探針角度修整與在生物樣品掃描上的應用研究,國立台灣師範大學物理研究所碩士論文
[29] Doktycz, M., et al., AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy, 2003. 97(1-4): p. 209-216.
[30] 蔡毓楨等著,2007,原子力顯微鏡實作訓練教材,台北:五南圖書出版股份有限公司
[31] Velegol, S., et al., AFM imaging artifacts due to bacterial cell height and AFM tip geometry. Langmuir, 2003. 19(3): p. 851-857.
[32] Rob Phillips, Jane Kondev, and Julie Theriot. 2008. Physical biology of the cell. New York: Garland Science
[33] Doi, M., et al., Determinations of the DNA sequence of the mreB gene and of the gene products of the mre region that function in formation of the rod shape of Escherichia coli cells. Journal of Bacteriology, 1988. 170(10): p. 4619.
[34] Cabeen, M. and C. Jacobs-Wagner, Bacterial cell shape. Nature Reviews Microbiology, 2005. 3(8): p. 601-610.
[35] Gerdes, K., RodZ, a new player in bacterial cell morphogenesis. The EMBO Journal, 2009. 28(3): p. 171.
[36] van den Ent, F., et al., Bacterial actin MreB assembles in complex with cell shape protein RodZ. The EMBO Journal, 2010. 29(6): p. 1081-1090.
[37] 鍾楊聰等譯,Gerard J. Tortora, Berdell R. Funke, and Christine L. Case著,2002,基礎微生物學,台北:偉明圖書有限公司
[38] 張怡塘著,2005,環境微生物實驗,台北:高立圖書有限公司
[39] 程光煦著,2001,拉曼 布里淵散射—原理及應用,北京:科學出版社

下載圖示
QR CODE