簡易檢索 / 詳目顯示

研究生: 林高遠
Lin, Kao-Yuan
論文名稱: 以類神經網路實現臉部影像疼痛水準即時估測
Implemented Rapid Pain Intensity Estimation from Facial Image using Artificial Neural Network
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 53
中文關鍵詞: 監督式機器學習特徵學習痛苦偵測電腦視覺
英文關鍵詞: Supervised Machine Learning, Feature Learning, Pain detection, Computer Vision
DOI URL: https://doi.org/10.6345/NTNU202204428
論文種類: 學術論文
相關次數: 點閱:264下載:41
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種以人類臉部影像為輸入資料,用類神經網路即時測得受測者疼痛水準的方法。情感運算在最近幾年來已經逐漸受到重視,而臉部影像疼痛水準自動估測,有助於醫療照顧、健康促進等領域自動化,有效減少第一線照顧者的負擔。但相關研究的數量與關注程度遠落後於其他表情辨識技術,使得相關應用發展受限。
    本論文嘗試兩種輸入資料:一種是屬於低階外觀特徵的人類臉部眼、嘴區域Uniform LBP直方圖,取得118-D向量;另一種屬於使類神經網路自動尋找的高階抽象特徵,將臉部影像做最大池化(Max Pooling)處裡後,從32x32灰階影像取得1024-D向量。將兩者正規化,再輸入類神經網路做迴歸訓練與測試。
    實驗結果方面,將The UNBC-McMaster Shoulder Pain Expression Archive Database隨機分割為兩份,分別做為訓練與測試樣本。將本論文提出的方法與Sebastian Kaltwang等人與Xiaopeng Hong等人的研究比較,可以達到較小的均方誤差(MSE=0.17)與較接近1的皮爾森相關係數(r=0.94)。速率表現方面,本論文以C#實作出的程式在i5雙核心的電腦上平均可以達24FPS。

    This thesis presents a method to estimate pain intensity which is revealed on human face image rapidly.
    Two types of data are extracted from the human face image: one of which is the Uniform LBP, the belong low-level appearance features, which is extracted from the eyes and mouth area; the other is the 32x32 face image data which is extracted using Max Pooling. Both will be computed by the regression neural network, and the neural network is trained and the training result will be verified.
    The data from the UNBC-McMaster Shoulder Pain Expression Archive Database is randomly assigned into two groups—one for training, another for testing. The result of this study achieves a MSE of 0.17 and a Pearson’s correlation coefficient close to 1 (r = 0.94), and the average computing speed achieves 24FPS on i5 dual-core computer.

    摘要 ii Abstract iii 誌謝 iv 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 論文架構 2 1.3 論文貢獻 3 第二章 表情疼痛估測相關研究回顧與探討 5 2.1 FACS與PSPI兩大人臉疼痛水準量化系統 5 2.2.1 Facial Action Coding System(FACS): 5 2.2.2 Prkachin and Solomon pain intensity(PSPI): 5 2.2 現有臉部表情資料庫 7 2.2.1 Japanese Female Facial Expressions (JAFFE) 7 2.2.2 Taiwanese Facial Expression Image Database 7 2.2.3 Infant COPE database 8 2.2.4 The UNBC-McMaster Shoulder Pain Expression Archive Database 8 2.3 疼痛表情辨識相關研究 9 2.3.1 疼痛表情特徵研究回顧 10 2.3.2 The UNBC-McMaster Shoulder Pain Expression Archive Database的Frame level Ground truth品質探討 11 2.3.3 痛苦表情辨識速度研究回顧 15 第三章 類神經網路介紹 16 3.1 單層感知機與倒傳遞 16 3.2 多層感知機 18 3.3 反向傳播演算法 20 3.4 迴歸類神經網路 21 3.4.1 迴歸簡介 21 3.4.2 以類神經網路迴歸sin(x)範例 22 3.5 學習模式 24 3.5.1 線上學習 24 3.5.2 批量學習 24 3.5.3 隨機學習 24 3.6 訓練數據調教 25 3.6.1 資料標準化 25 第四章 影像前處理 27 4.1 眼嘴區域Local Binary Pattern 27 4.2 池化運算 30 4.3 資料擴增 32 第五章 實驗結果與討論 34 5.1 實驗設備 34 5.1.1 EmguCV 3.1 34 5.1.2 Microsoft Visual Studio Community 2015 35 5.2 均方誤差 36 5.3 皮爾森相關係數 36 5.4 混淆矩陣 38 5.5 實驗方法 39 5.6 實驗結果 42 第六章 結論與未來展望 48 6.1 結論 48 6.2 未來展望 49 參考文獻 50

    [1] "Microsoft Project Oxford Emotion API," Microsoft, [Online]. Available: https://www.projectoxford.ai/emotion. [Accessed 2016].
    [2] Theodoridis Sergios, Koutroumbas Konstantinos, in Pattern Recognition (Fourth Edition), Academic Press, 2009, p. 7.
    [3] KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E., "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, pp. 1097-1105., 2012.
    [4] Lucey, P., Cohn, J. F., Prkachin, K. M., Solomon, P. E., Matthews, I., "Painful data: The UNBC-McMaster shoulder pain expression archive database," in Automatic Face & Gesture Recognition and Workshops, 2011 IEEE International Conference on (pp. 57-64), 2011.
    [5] "Facial Action Coding System," Wikimedia Foundation, Inc, [Online]. Available: https://en.wikipedia.org/wiki/Facial_Action_Coding_System. [Accessed 25 2 2016].
    [6] Prkachin, K. M., Solomon, P. E., "The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain," Pain, 139(2), pp. 267-274, 2008.
    [7] Lyons, M. J., Akamatsu, S., Kamachi, M., Gyoba, J., Budynek, J., "The Japanese female facial expression (JAFFE) database," 1998. [Online]. Available: http://www. kasrl, org/jaffe.html.
    [8] Chen, Li-Fen, and Yu-Shiuan Yen, "Taiwanese facial expression image database, Brain Mapping Laboratory, Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan," 2007. [Online]. Available: http://bml.ym.edu.tw/tfeid/. [Accessed 16 6 2016].
    [9] Loris Nannia, Alessandra Luminia, Sheryl Brahnam, "Local binary patterns variants as texture descriptors for medical image analysis," Artificial intelligence in medicine 49(2), pp. 117-125.
    [10] Gholami, Behnood, Wassim M. Haddad, and Allen R. Tannenbaum., "Agitation and pain assessment using digital imaging," in IEEE Engineering in Medicine and Biology Society. Conference (Vol. 2009), 2009.
    [11] Kaltwang Sebastian, Ognjen Rudovic, and Maja Pantic, "Continuous pain intensity estimation from facial expressions," Advances in Visual Computing, pp. 368-377, 2012.
    [12] 王佳琪, Recognition of Painful Facial Expression using Multiple Kernel Learning, 臺灣新竹: 國立清華大學電機工程學系碩士論文, 2011.
    [13] MLA Chen, Junkai, Zheru Chi, and Hong Fu., "A new approach for pain event detection in video," in Affective Computing and Intelligent Interaction (ACII), International Conference, 2015.
    [14] Florea, C., Florea, L., Boia, R., Bandrabur, A., Vertan, C., "Pain Intensity Estimation by a Self--Taught Selection of Histograms of Topographical Features," 26 5 2016. [Online]. Available: http://arxiv.org/abs/1503.07706.
    [15] 周揚賀, 基於深度摺積神經網路之影像檢索技術, 臺灣桃園: 國立中央大學通訊工程學系碩士論文, 2015.
    [16] "CS231n Convolutional Neural Networks for Visual Recognition," [Online]. Available: http://cs231n.github.io/neural-networks-3/. [Accessed 15 6 2016].
    [17] 演算法筆記, "Regression," [Online]. Available: http://www.csie.ntnu.edu.tw/~u91029/Regression.html. [Accessed 26 6 2016].
    [18] Mu Li, Tong Zhang, Yuqiang Chen, Alexander J. Smola, "Efficient mini-batch training for stochastic optimization," in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014.
    [19] McCaffrey, James, "How To Standardize Data for Neural Networks," 15 1 2014. [Online]. Available: https://visualstudiomagazine.com/Articles/2014/01/01/How-To-Standardize-Data-for-Neural-Networks.aspx?Page=2. [Accessed 31 5 2016].
    [20] Liu, P. H., Su, S. F., Chen, M. C., Hsiao, C. C., "Deep learning and its application to general image classification," in Informative and Cybernetics for Computational Social Systems (ICCSS), 2015.
    [21] Paul Viola, Michael J. Jones, "Robust Real-Time Face Detection," International Journal of Computer Vision, pp. 137-154, 5 2004.
    [22] 廖文宏, "基於三元化樣式的通用型區域特徵描述方法," 國立政治大學資訊科學系行政院國家科學委員會專題研究計畫期末報告, 臺灣台北, 2011.
    [23] T. Ojala, M. Pietikainen and T. Maenpaa,, "Multi-resolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24(7), pp. 971-987, July 2002.
    [24] "Emgu CV: OpenCV in .NET (C#, VB, C++ and more)," [Online]. Available: http://www.emgu.com/wiki/index.php/Main_Page.
    [25] 周志成, "相關係數," [Online]. Available: https://ccjou.wordpress.com/2011/03/09/相關係數/. [Accessed 10 6 2016].
    [26] Hong, X., Zhao, G., Zafeiriou, S., Pantic, M., Pietikäinen, M., "Capturing correlations of local features for image representation," Neurocomputing, pp. 99-106, 2016.
    [27] H. e. a. Li, "A convolutional neural network cascade for face detection," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

    下載圖示
    QR CODE