研究生: |
黃韋程 Huang, wei-cheng |
---|---|
論文名稱: |
利用三維多孔碳奈米結構提升二氧化錫陽極材料於鋰離子電池循環穩定性之研究 The Cycling Performance Study of Tin Dioxide Loading in Three Dimensional Porous Carbon as Anode Electrode for Lithium Ion Batteries |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 鋰離子電池 、三維多孔碳 、二氧化錫 、海藻酸 |
英文關鍵詞: | lithium ion battery, porous carbon, tin dioxide, alginate |
論文種類: | 學術論文 |
相關次數: | 點閱:221 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化錫是近年來鋰離子電池中備受矚目的陽極材料,因為二氧化錫具有很高的比電容量(782mAhg-1)等優點,但其最大的缺點是在鋰離子嵌入材料後,體積會膨脹造成電容量快速地衰減。本研究利用商用碳酸鈣奈米粒子為模板,蔗糖為碳源合成三維多孔碳奈米材料,經由水熱法製備二氧化錫/三維多孔碳複合材料。
多孔碳結構具有高表面積、高孔隙體積、高導電度等優點,可以解決二氧化錫本身導電度不足的缺點,此外,本研究使用海藻酸黏著劑並於電解液中添加FEC改善充放電過程中SEI不穩定等問題,使二氧化錫/三維多孔碳複合材料在電流密度1000 mAg-1下充放電一百次,其電容量仍保有462 mAhg-1以及98%以上的庫倫效率。
Tin dioxide as a promising anode material in Lithium ion batteries, offer a high theoretical gravimetric Li-storage capacity of 782 mAhg-1,which is more than twice that currently commercialized graphite (372 mAhg-1). However, like many other alloying anode materials, a large volume change during electrochemically alloy formation can lead to rapid deterioration of the electrode, thus greatly limiting the practical use of the SnO2 anode materials. In this study, we prepare a porous carbon by using commercial CaCO3 nanoparticle as template and sucrose as carbon source follow by 900℃high-temperature calcination. SnO2/porous carbon composites are synthesized by hydrothermal method, and served as anode of rechargeable Lithium ion batteries. The porous carbon structure with a high specific surface area, high pore volume and high electronic conductivity that can provide stable electronic transfer channel for SnO2/porous carbon composites. At 1.27C rate, the SnO2/porous carbon composites electrode prepared by using alginate as a binder and fluoroethylene carbonate(FEC) added to the electrolyte exhibited discharge capacity of 462mAhg-1 after 100 cycle.
(1) WHITTINGHAM, M. S. Science 1976, 192, 1126.
(2) Xia, Y.; Fujieda, T.; Tatsumi, K.; Prosini, P. P.; Sakai, T. Journal of Power Sources 2001, 92, 234.
(3) Yamaki, J.-i.; Tobishima, S.-i.; Hayashi, K.; Keiichi, S.; Nemoto, Y.; Arakawa, M. Journal of Power Sources 1998, 74, 219.
(4) Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Materials Research Bulletin 1983, 18, 461.
(5) Goodenough, J. B.; Kim, Y. Chemistry of Materials 2010, 22, 587.
(6) Xu, K. Chemical Reviews 2004, 104, 4303.
(7) Zhang, S. S. Journal of Power Sources 2006, 162, 1379.
(8) Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S. Materials Science and Engineering: R: Reports 2012, 73, 51.
(9) Zhan, C.; Lu, J.; Jeremy Kropf, A.; Wu, T.; Jansen, A. N.; Sun, Y.-K.; Qiu, X.; Amine, K. Nat Commun 2013, 4.
(10) Julien, C.; Mauger, A.; Zaghib, K.; Groult, H. Inorganics 2014, 2, 132.
(11) Noh, M.; Kwon, Y.; Lee, H.; Cho, J.; Kim, Y.; Kim, M. G. Chemistry of Materials 2005, 17, 1926.
(12) Tamura, N.; Ohshita, R.; Fujimoto, M.; Fujitani, S.; Kamino, M.; Yonezu, I. Journal of Power Sources 2002, 107, 48.
(13) Liang, C.; Gao, M.; Pan, H.; Liu, Y.; Yan, M. Journal of Alloys and Compounds 2013, 575, 246.
(14) Nwokeke, U. G.; Alcántara, R.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E. Journal of Power Sources 2011, 196, 6768.
(15) Wang, J.; Fan, F.; Liu, Y.; Jungjohann, K. L.; Lee, S. W.; Mao, S. X.; Liu, X.; Zhu, T. Journal of The Electrochemical Society 2014, 161, F3019.
(16) Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Advanced Materials 2007, 19, 2336.
(17) Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Science 1997, 276, 1395.
(18) Chen, J. Materials 2013, 6, 156.
(19) Zhao, Y.; Li, J.; Wang, N.; Wu, C.; Dong, G.; Guan, L. The Journal of Physical Chemistry C 2012, 116, 18612.
(20) Deng, D.; Lee, J. Y. Chemistry of Materials 2008, 20, 1841.
(21) Xu, X.; Liang, J.; Zhou, H.; Lv, D.; Liang, F.; Yang, Z.; Ding, S.; Yu, D. Journal of Materials Chemistry A 2013, 1, 2995.
(22) Wang, C.; Du, G.; Ståhl, K.; Huang, H.; Zhong, Y.; Jiang, J. Z. The Journal of Physical Chemistry C 2012, 116, 4000.
(23) Wu, P.; Du, N.; Zhang, H.; Zhai, C.; Yang, D. ACS Applied Materials & Interfaces 2011, 3, 1946.
(24) Jin, Y.-H.; Min, K.-M.; Seo, S.-D.; Shim, H.-W.; Kim, D.-W. The Journal of Physical Chemistry C 2011, 115, 22062.
(25) Wang, X.; Zhou, X.; Yao, K.; Zhang, J.; Liu, Z. Carbon 2011, 49, 133.
(26) Han, F.; Li, W.-C.; Li, M.-R.; Lu, A.-H. Journal of Materials Chemistry 2012, 22, 9645.
(27) Xu, G.-L.; Xu, Y.-F.; Fang, J.-C.; Peng, X.-X.; Fu, F.; Huang, L.; Li, J.-T.; Sun, S.-G. ACS Applied Materials & Interfaces 2013, 5, 10782.
(28) Liu, J.; Cheng, J.; Che, R.; Xu, J.; Liu, M.; Liu, Z. The Journal of Physical Chemistry C 2013, 117, 489.
(29) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75.
(30) McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W. Journal of Power Sources 1999, 81–82, 20.
(31) Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Langmuir 2012, 28, 965.
(32) Kravchyk, K.; Protesescu, L.; Bodnarchuk, M. I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M. V. Journal of the American Chemical Society 2013, 135, 4199.