簡易檢索 / 詳目顯示

研究生: 韓同耀
Han, Tong-Yao
論文名稱: 以超快雷射製作石墨烯/二硫化鉬元件結構於氣體檢測
Using Ultra-Fast Laser to Fabricate Graphene/MoS₂ Device Structures for Gas Detection
指導教授: 張天立
Chang, Tien-Li
口試委員: 王建評
Wang, Chien-Ping
李亞偉
Lee, Ya-Wei
林鼎晸
Lin, Ding-Zheng
張天立
Chang, Tien-Li
口試日期: 2021/07/09
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 超快雷射石墨烯加熱感測元件氣體感測二硫化鉬
英文關鍵詞: Ultrafast laser processing technique, Graphene, MoS₂, Heating sensing device, Gas detection
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100631
論文種類: 學術論文
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1 研究背景與目的 1 1.2 氣體感測器概述 2 1.3 氣體感測器的原理及分類 3 1.4 雷射製程技術簡介 4 1.5 二維材料 5 1.6 導電材料 7 1.7 微加熱元件概述 7 第二章 文獻回顧 14 2.1 超快雷射加工機簡介 14 2.2 超快雷射製程回顧 14 2.3 氣體感測器應用回顧 16 2.4 石墨烯材料回顧 18 2.4.1 石墨烯性質 18 2.4.2 石墨烯熱元件 19 2.5 石墨烯結構與氣體反應原理 20 2.6 硫化鉬金屬氧化物 21 2.6.1 MoS2的晶體結構與基本性質 21 2.6.2 硫化鉬金屬氧化物氣體偵測 22 2.6.3 二硫化鉬基氣敏感測器研究現狀 22 2.7 微加熱元件研究情況 25 第三章 研究方法與設計 40 3.1 研究方法 40 3.2 石墨烯導電薄膜製作 40 3.3 超快雷射製程製造 41 3.3.1 雷射加工剝離閥值 42 3.3.2 雷射加工之重疊率與脈衝數 43 3.4 加熱元件設計 44 3.4.1 石墨烯薄膜微加熱器 44 3.4.2 石墨烯微加熱器結構設計與材料選擇 45 3.5 微型加熱氣體感測元件設計與製作 46 3.6 氣體感測器腔體製作 47 3.7 MOS₂/石墨烯薄膜製作 47 3.8 氣體感測晶片檢測分析 48 3.9 傳熱理論 48 3.9.1 熱傳導 49 3.9.2對流熱傳遞 50 3.9.3 熱輻射 51 3.10電熱耦合關係 52 3.11 有限元理論 55 3.12 實驗量測與設備 58 第四章 研究結果與討論 68 4.1 石墨烯薄膜分析 68 4.1.1 旋轉塗佈石墨烯表面形貌分析 68 4.1.2 石墨烯薄膜表面分析及特性分析 69 4.2 加熱電極結構設計 69 4.3 石墨烯基微加熱器焦耳熱模擬分析 74 4.3.1 焦耳熱模擬前處理 75 4.3.2 COMSOL的建模步驟 75 4.3.3 物理模型的建置和材料參數設定 75 4.3.4 物理條件的設定 76 4.3.5 網格劃分 76 4.3.6 工作條件設定與模擬計算 77 4.3.7 模擬結果分析與討論 78 4.4 超快雷射於導電薄膜圖案化之結果 82 4.4.1雷射加工剝離閥值 83 4.4.2 微型加熱感測元件製作 84 4.5 微型加熱感測元件之電壓與溫度變化關係 84 4.5.1微型加熱感測元件consol模擬分析 84 4.5.2微型加熱感測元件實際施加電壓與溫度變化關係 85 4.6 MOS/石墨烯元件氣體感測分析 86 4.6.1 MoS氣敏機理研究 86 4.6.2 MoS2敏感膜氣敏機理分析 87 4.7 電性與氣體反應檢測分析 87 4.7.1 石墨烯加熱感測元件與加熱溫度之關係 87 4.7.2 MoS2/石墨烯加熱感測元件與加熱溫度之關係 89 第五章 結論 117 5.1 結論 117 5.2 建議與未來展望 119 參考文獻 120

    [1] 溫衛敏室內有毒氣體監測研究,西安科技大學 (2008).
    [2] Gas sensor market size, share & trends analysis by product, by technology, by end use (medical, environmental, petrochemical, automotive, industrial, agriculture, others), by region, and segment forecasts, Market Research Report (2019).
    [3] G. Neri, First fifty years of chemoresistive gas sensors, Chemosensors, Vol.3, 1-20 (2015).
    [4] CNT gas sensors, Alpha Szenszor (2016).
    [5] T. T. Tung, M. Nine, M. Krebsz, T. Pasinszki, C.J. Coghlan, D. N. H. Tran, D. Losic, Recent advances in sensing applications of graphene assemblies and their composites, Graphene Assemblies, Vol. 27, 1702891 (2017).
    [6] 謝孟玹. 產業技術分析偵測PM2.5與空氣污染的關鍵之鑰-氣體感測器,經濟部技術處 (2015).
    [7] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice, Materials Science and Engineering: B, Vol. 139, pp. 1-23 (2007).
    [8] C. Momma, B.N. Chichkov, S. Nolte, F.V. Alvensleben, A. Tiinnermann, H. Welling, B. Wellegehausen, Short-pulse laser ablation of solid targets, Optics Communications, Vol. 129, 1343-142 ( 1996).
    [9] S. Dadashi, H. Delavari, R. Poursalehi, Optical properties and colloidal stability mechanism of bismuth nanoparticles prepared by Q-switched Nd:Yag laser ablation in liquid, Procedia Materials Science, Vol. 11, 679-683 ( 2015 )
    [11] K. Sugioka, Y. Cheng, Ultrafast lasers—reliable tools for advanced materials processing review, Science & Applications, Vol. 14, 1-12 (2014).
    [12] P. R.Wallace, The band theory of graphite. Physical Review, 1947, Vol. 71, 622.
    [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, Electric field effect in atomically thin carbonfilms, Science, Vol. 306, 666-669 (2004).
    [14] K. S. Novoselov, Z. Jiang , Y. Zhang .Room-temperature quantum Hall effect ingraphene, Science, Vol. 315, 1379-1379 (2007).
    [15] W. Krätschmer, L. D. Lamb, K. Fostiropoulos. C60: a new form of carbon. Nature, 1990, 347, 354-358.
    [16] S. Iijima, Helical microtubules of graphitic carbon. Nature, Vol. 354, 56-58 (1991).
    [17] D. Hisamoto, W. C. Lee,J Kedzierski. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Transactions on Electron Devices, Vol. 47, 2320-2325 (2000).
    [18] Y. K. Choi, K. Asano, N. Lindert, Ultra-thin body SOI MOSFET for deep-sub-tenthmicron era. IEEE Intertional Electron Devices Meeting (IEDM 99), 919-921 (1999).
    [19] M. C. Lemme,T J Echtermeyer, M. Baus . Mobility in graphene double gate field effect transistors. Solid-State Electronics, Vol. 52, 514-518 (2007).
    [20] W. Arden, M. Brillouët , P. Cogez. More than-Moore white paper. Version, Vol. 2, 14 (2014)
    [21] Graphene composites: introduction and market status, Graphene-Info: the graphene experts (2016).
    [22] A. K. Sundramoorthy, T. H. V. Kumar, S. Gunasekaran, Graphene-based nanosensors and smart food packaging systems for food safety and quality monitoring, Graphene Nanosensors & Smart Food Packaging, Vol. 12, 267-306 ( 2018 ).
    [23] 賀淩翔. 基於MEMS工藝的氣體感測器微熱板設計、製作與測試. 深圳:深圳大學 (2018).
    [24] 楊昆. MEMS微型加熱器的設計及應用研究. 北京:北京交通大學 (2015).
    [25] M. Lim, H. Kim, E. H. Ko, Ultrafast laser-assisted selective removal of self-assembled Ag network electrodes for flexible and transparent film heaters. Journal of Alloys and Compounds, Vol. 688, 198-205 (2006).
    [26] X. M. Lv, J. Liu, S. Wang, Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating. Applied Surface Science A, Journal Devoted to the Properties of Interfaces in Relation to the Synthesis & Behaviour of Materials, Vol. 366, 227-232 (2016).
    [27] W. Zhang, Z. Shi, C. Chen, Super-resolution GaAs nano-structures fabricated by laser direct writing, Materials Science in Semiconductor Processing, Vol. 84, 119-123 (2018).
    [28] D. H. Kam, J. Kim, J. Mazumder. Near-IR nanosecond laser direct writing of multi-depth microchannel branching networks on silicon, Journal of Manufacturing Processes, Vol. 35, 99-106 (2018).
    [29] S. Xu, L. Ren, B. Liu, Single-step selective metallization on insulating substrates by laser-induced molten transfer, Applied Surface Science, Vol 454, 16-22 (2018).
    [30] B. Sohn, Hun-Kook Choi, Dongyoon Yoo, Three-dimensional hologram printing by single beam femtosecond laser direct writing, Applied Surface Science, Vol. 427, 396-400 (2018).
    [31] W. Ma, P. Zhang, W. Zhou, Femtosecond-laser direct-writing volume phase gratings inside Ge–As–S chalcogenide glass, Ceramics International, Vol. 46, 17599-17605 (2020).
    [32] L. C. Wang, K. T. Tang, S. W. Chiu. A bio-inspired two-layer multiple-walled carbonnanotube-polymer composite sensor array and a bio-inspired fast-adaptive readout circuit foraportable electronic nose, Biosensors and Bioelectronics, Vol. 26, 4301-4307 (2011).
    [33] X. P. Li, J. H. Cho, P. Kurup. Novel sensor array based on doped tin oxide nanowiresfororganic vapor detection, Sensors and Actuators B: Chemical, Vol. 162, 251-258 (2012).
    [34] V. Guidia, M. C. Carotta, B. Fabbri. Array of sensors for detection of gaseous malodorsinorganic decomposition products, Sensors and Actuators B: Chemical, Vol. 174, 349-354 (2012).
    [35] J. Fonollosa, L. Fernández, R. Huerta, Temperature optimization of metal oxidesensorarrays using Mutual Information, Sensors and Actuators B: Chemical, Vol. 187, 331-339 (2013).
    [36] J. Fonollosa, I. R. Lujan, A. V. Shevade, Human activity monitoring using gasse nsorarrays, Sensors and Actuators B: Chemical, Vol. 199, 19398-402 (2014).
    [37] X. Du, I. Skachko, A. Barker. Approaching ballistic transport in suspended graphene, Nature Nanotechnology, Vol. 3, 491-495 (2008).
    [38] A. A. Balandin, S. Ghosh, W. Bao, Superior thermal conductivity of single-layer graphene. Nano Letters, Vol.8, 902-907 (2008).
    [39] S. Ghosh, I. Calizo, D. Teweldebrhan. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, Vol. 92, 15191-3 (2008).
    [40] J. H. Seol, I. Jo, A. L. Moore, Two-dimensional phonon transport in supported graphene Science, Vol. 328, 213-216 (2016).
    [41] J. Hu, X. Ruan , Y. P. Chen, Thermal conductivity and thermal rectification in grapheme nanoribbons: a moleculuar dynamics study. Nano Letters, Vol. 9, 2730-2735 (2009).
    [42] N. Yang, G. Zhang, B. Li. Thermal rectification in asymmetric graphene ribbons. Applied Physics Letters, Vol. 95, 033107 (2009).
    [43] Z. Yan, G. Liu, Khan J M, Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, Vol. 3, 827 (2012).
    [44] N. Han, T. V. Cuong, M. Han. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nature Communications, Vol. 4, 1452 (2013).
    [45] Z. Gao, Y. Zhang, Y. Fu. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon, Vol. 61, 342-348 (2013).
    [46] F. Schedin, A. K. Geim, S. V. Morozov, E. V. Hill, P. Blake M. I. Katsnelson, K. S. Novose, Detection of individual gas molecules adsorbed on graphene, Nature Materials, Vol. 6, 652 655 (2007).
    [47] Z. Ye, H. Tai, T. Xie, Y. Sun, Z. Yuan, C. Liu, Y. Jiang, A facile method to develop novel TiO2/rGO layered film sensor for dete cting ammonia at room temperature, Materials Letters, Vol. 165, 127-130 (2016).
    [48] H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, M. M. Cheng Cheng, Carbon dioxide gas sensor using a graphene sheet, Sensors & Actuators B Chemical, Vol. 157, 310-313 (2011).
    [49] G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee, Jaehyun Kim,Graphene based nitrogen dioxide gas sensors, Current Applied Physics , Vol. 10, 1002- 1004 (2010).
    [50] J. Hassinen, J. Kauppila, J. Leiro, A. Maattanen, Low cost reduced graphene oxide basedconductometric nitrogen dioxide sensitive sensor on paper, Analytical and Bioanalytical Chemistry, Vol. 405, 3611-3617 (2013).
    [51] 蘇世闖. MoS2/ZnO複合結構製備及光學性質研究. 長春: 長春理工大學 (2018).
    [52] 陸小龍. 層狀鉬化合物納米複合材料的氫氣氣敏和應變特性研究. 哈爾濱: 哈爾濱工業大學 (2017).
    [53] 張亨, 奈米二硫化鉬的製備及性質研究進展.中國鉬業, 39, 5(2015).
    [54] 黃飛, 趙輝, 馮昊, 二硫化鉬納米材料在化學電源中的研究進展, 新能源進展, 375-383 (2015).
    [55] D. Merki, X. Hu, Recent developments of molybdenum and tungstensulfides as hydrogen evolution catalysts, Energy & Environmental Science, Vol. 4: 3878-3888 (2011).
    [56] K. Dolui, C. D. Pemmaraju, S. Sanvito, Electric fieldeffects on armchair MoS 2 nanoribbons, Acs Nano, Vol. 6: 4823-4834 (2013).
    [57] F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jerniganand, B. T. Jonker, Chemical vapor sensing with monolayer MoS2, Nano Letters, Vol. 13, 668-673 (2012).
    [58] E. Lee, S. Lee, N. Heo, G. D. Stucky, Y. S. Jun, WonhiHong. A fluorescent sensor for selec tive detection of cyanide usingmesoporous graphitic carbon(IV) nitride, Chemical Communications, Vol. 48 , 3942-3944 (2012).
    [59] W. Park, J. Park, Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors, Nanotechnology, Vol. 24, 095202 (2013).
    [60] S. M. Cui, Z. H. Wen, Stabilizing MoS2 Nanosheets through SnO2 Nanocrystal Decoration for High-Performance Gas Sensing in Air. Small, Vol. 11, 2305-2313 (2015).
    [61] C. Kuru, C. Choi, A. Kargar, MoS2 nanosheet-Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen, Advanced Science, Vol. 2, 1500004 (2015).
    [62] Y. Niu, R. Wang, MoS2 graphene fiber based gas sensing devices, Carbon, Vol. 95, 34-41 (2015).
    [63] H. H. Yan, P. Song, S. Zhang, Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets, Journal of Alloys and Compounds, Vol. 662, 118-125 (2016).
    [64] I. Kiju, K. Cho, J. Kim, Transparent heaters based on solution-processed indium tin oxide nanoparticles, Thin Solid Films, Vol. 518, 3960-3963 (2010).
    [65] T. Y. Kim, Y. W. Kim, H. S. Lee, Uniformly interconnected silver-nanowire networks for transparent film heaters, Advanced Functional Materials, Vol. 23, 1250-1255 (2012).
    [66] C. Celle, C. Mayousse, E. Moreau, Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, Vol. 5, 427-433 (2012).
    [67] S. Ye, A. R. Rathmell, Z. Chen, Metal Nanowire Networks: The Next Generation of Transparent Conductors, Advanced Materials, Vol. 26, 6670-6687 (2014).
    [68] A. Venkatasubramanian, J. H. Lee, Vi. Stavila, Design optimization for high sensitivity chemical detection, Sensors & Actuators B Chemical, Vol. 168, 256-262 (2012).
    [69] B. Nemeth, M. S. Piechocinski, R.S. Cumming. High-resolution real-time ion-camera system using a CMOS-based chemical sensor array for proton imaging, Sensors & Actuators B Chemical, Vol. 171,747-752 (2012).
    [70] M. Righettoni, A. Tricoli, S. Gass, Breath acetone monitoring by portable Si:WO3 gas sensors, Analytica Chimica Acta, Vol. 738: 69-75 (2012).
    [71] A. Pike, J. W. Gardner, Thermal modelling and characterisation of micropower chemoresistive silicon sensors, Sensors & Actuators B Chemical, Vol. 45, 19-26 (1997).
    [72] M. Baroncini, P. Placidi, G.C. Cardinali, Thermal characterization of a microheater for micromachined gas sensors, Sensors & Actuators A Physical, Vol. 115,8-14 (2004).
    [73] W. Y. Chang, Y. S. Hsihe, Multilayer microheater based on glass substrate using MEMS technology, Microelectronic Engineering, Vol. 149, 25-30 (2016).
    [74] Z. X. Cai, X. Y. Zeng, J. Duan, Fabrication of platinum microheater on alumina substrate by micro-pen and laser sintering, Thin Solid Films, Vol. 519, 3893-3896 (2011).
    [75] U. Schmid, H. Seidel, Enhanced stability of Ti/Pt micro-heaters using a-SiC:H passivation layers. Sensors & Actuators A Physical, Vol. 130, 194-201 (2006).
    [76] J. Ederth, P. Johnsson, G. A, Niklasson, Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles, Physical Review B, Vol. 68, 155410 (2003).
    [77] T. Y. Zhang, H. M. Zhao, D.Y. Wang, A super flexible and custom-shaped graphene heater, Nanoscale, Vol. 9, 14357-14363 (2017).
    [78] S. Y. Lin, T. Y. Zhang, Q. Lu, High-performance graphene-based flexible heater for wearable applications, Rsc Advances, Vol.7, 27001-27006 (2017).
    [79] R. Marco, J. Francisco, Alfonso Salinas-Castillo, Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates, Carbon, Vol. 144, 116-126 (2018).
    [80] G. Pal, A. Dutta, K. Mitra, M.S. Grace, A. Amat, T. B. Romanczyk, X. J. Wu, K. Chakrabarti, J. Anders, E. Gorman, R. W. Waynant, D. B. Tata, Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes, Photochem Photobiol B, Vol. 86, 252-261 (2007).
    [81] 張天立、鄧敦建. 國立臺灣師範大學雷射工程技術與應用課程講義 (2019).
    [82] R. Phatthanakun, P. Deekla, W. Pummara, N. Chomnawang Fabrication and control of thin-film aluminum microheater and nickel temperature sensor. Electrical Engineering/Electronics, Computer, Vol. 10,1109 (2011).
    [83] 楊世銘. 傳熱學. 北京:高等教育出版社 (2006).
    [84] 候鎮冰. 固體熱傳導. 上海:上海科學技術出版社 (1984).
    [85] V. S. Abaz, P. S. Larson, 對流換熱. 北京:高等教育出版社 (1992).
    [86] 金亞秋. 電磁散射和熱輻射的遙感理論. 北京:科學出版社 (1993).
    [87] E. Whittaker, History of the Theories of Aether and Electricity. Soil ence, Vol. 77,417 (1951).
    [88] D. H. Perkins, R. Carlitz, Introduction to high energy physics, Physics Today, Vol. 26, 55-57(1973).
    [89] 《中國電力百科全書》編輯委員會, 中國電力出版社《中國電力百科書編輯部. 中國電力百科全書:電工技術基礎卷. 北京:中國電力出版社 (2014).
    [90] 閻金鐸.中國中學教學百科全書:物理卷. 瀋陽:瀋陽出版社 (1990).
    [91] 鄭青嶽.焦耳定律教材中兩個公式推導的修正. 物理教師.
    [92] L. Xu, T. Li, X L. Gao, A high-performance three-dimensional microheater-based catalytic gas sensor, Electron Device Letters, IEEE, Vol. 33, 284-286 (2012).
    [93] L. Xu, Tie Li, Y. Wang. A novel three-dimensional microheater, IEEE Electron Device Letters, Vol. 32, 1284-1286 (2011).
    [94] G. Velmathi, N. Ramshanker, M. S. Design, Electro-Thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing. IEEE, (2010).
    [95] L. Xu, Y. Wang, H. Zhou, Design, Fabrication, and characterization of a high-heating-efficiency 3-D microheater for catalytic gas sensors, Journal of Microelectromechanical Systems, Vol. 21, 1402-1409 (2012).
    [96] 韓東彥, 銀奈米線和聚二甲基矽氧烷複合材料的柔性薄膜加熱器蘭州:蘭州大學 (2019).
    [97] J. P. Li, J. J. Liang, X. Jian, A Flexible and Transparent Thin Film Heater Based on a Silver Nanowire/Heat‐resistant Polymer Composite. Macromolecular Materials & Engineering, Vol. 299, 1403-1409 (2015).
    [98] S. Hong, H. Lee, J. Lee, Highly sretchable and transparent metal nanowire heater for wearable electronics applications, Advanced Materials, Vol. 27, 4744-4751 (2015).
    [99] 宋天霞. 有限元理論及應用基礎教程. 北京:科學出版社 (1993).
    [100] L. Logan, L. Dary, 伍義生, 吳永禮譯. 有限元方法基礎教程 (2007).
    [101] H. John, R. W. Clough, M. J. Turner, Early history of the finite element method from the view point of a pioneer, International Journal for Numerical Methods in Engineering, Vol. 60, 283-287 (2004).
    [102] R. W. Clough. Thoughts about the origin of the finite element method. Computers & Structures, Vol.79, 2029-2030 (2001).
    [103] G. Velmathi, N. Ramshanker, S. Mohan, 2D Simulations and electro-thermal analysis of micro-heater designs using COMSOLTM for gas sensor applications, COMSOL Conference I (2010).
    [104] L. Sujatha, V. S. Selvakumar, S. Aravind, Design and analysis of micro-Heaters for Temperature optimization using COMSOL multiphysics for mems based gas sensor, proceedings COMSOL conference in bangalore (2012).
    [105] N. Dufour, C. Wartelle, P. Menini. 3D stationary and temporal electro-thermal simulations of metal oxide gas sensor based on a high temperature and low power consumption micro-heater structure using COMSOL, International Comsol Conference (2012).
    [106] 王剛. COMSOL Multiphysics工程實踐與理論模擬—多物理場數值分析技術. 北京:電子工業出版社 (2012).

    無法下載圖示 本全文未授權公開
    QR CODE