簡易檢索 / 詳目顯示

研究生: 傅怡瑄
論文名稱: 含十六族 (硫、硒、碲) 與過渡金屬 (錳、鐵、銅、汞) 團簇化合物之反應性、電化學、電子吸收光譜及理論計算
指導教授: 謝明惠
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 176
中文關鍵詞: 團簇物
英文關鍵詞: cluster, S, Se, Te, Mn, Fe, Cu, Hg
論文種類: 學術論文
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1. S/Mn/CO 系統之研究
    利用 S powder 與 Mn2(CO)10 以莫耳比 2:1於 1 M 或 7 M 之 KOH/MeOH 溶液中反應,可分別得到 [S2Mn3(CO)9]─ (1) 及 [HS2Mn3(CO)9]2─ (2)。若將莫耳比改為 5:1 於 4 M 之鹼性溶液中,則生成多硫之錳錯合物 [Mn3(CO)9(-S2)2(-HS)]2─ (3)。此外,團簇物 1 可於 鹼性溶液中與 CO 或 S powder 反應轉換成錯合物 2 及 3。而團簇物 2 也可藉由加入 [Cu(MeCN)4]BF4 進行氧化反應轉換回團簇物 1 並伴隨氫氣生成,或於高溫下與 S powder 反應可形成錯合物 3。反之,錯合物 3 轉換回 2 則需於鹼性條件下外加 Mn2(CO)10 而成。有趣的是,若團簇物 2與 S powder 的反應改置於室溫下,可意外得到另一錯合物 [HMn3(CO)9(-S2)2(-S)]2─ (4)。錯合物 3 及 4 為同分異構物,且動力學產物 4 可經由加熱轉換成熱力學產物 3。除此之外,錯合物 3 也可與不同氧化試劑 (例如:MeI、CH2Cl2、Mn(CO)5Br、[Cu(MeCN)4]BF4) 反應,生成氧化物 [Mn3(CO)9(-S2)(-HS)(-S2Me)]─ (5)、[{Mn3(CO)9(-S2)2(-HS)}2(CH2)]2─ (6)、[S5Mn4(CO)12]2─ (7) 及 [S4Mn3(CO)10]─ (8)。上述化合物之生成、轉換及電化學亦藉由理論計算進一步驗證。

    2. E/Fe/CO (E = S, Se, Te) 系統之研究
    將一維含 Cu 聚合物 [{Cu(dpy)(MeCN)2}{BF4}]n (dpy = 4,4'-dipyridine) (1) 與含十六族混合 Hg 與 Fe 羰基團簇物 [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a];Te, [Et4N]2[2c]) 以莫耳比 2: 1 混合,利用液體輔助機械研磨方式 (liquid-assisted grinding, LAG) 分別可得到一維聚合物 [{Cu(dpy)(MeCN)}2{{SFe3(CO)9}2Hg}]n (4)及 [{Cu(dpy)(MeCN)2}2{{TeFe3(CO)9}2Hg}]n (5c);於相似條件下,當若將聚合物 1 與 [Et4N]2[{SeFe3(CO)9}2Hg] ([Et4N]2[2b]) 或 [Et4N]2[2c] 及 dpy 以莫耳比 2:1:0.5 進行研磨,可生成混合一維及二維骨幹之陰陽離子聚合物 [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{EFe3(CO)9}2Hg}]n (E = Se, Te)。此外,固態電子吸收光譜顯示 3、4、5b 及 5c 皆具有半導體性質,其能隙落在 1.36 ~ 1.67 eV 之間。再者,此系列聚合物之生成及光學性質進一步藉由理論計算佐證。

    關鍵字: 團簇物、硫、硒、碲、錳、鐵、銅、汞

    1. S/Mn/CO System
    The reactions of S powder with Mn2(CO)10 in a molar ratio of 2: 1 in 1 M or 7 M KOH/MeOH solutions led to the formation of clusters [S2Mn3(CO)9]─ (1) and [HS2Mn3(CO)9]2─ (2), respectively. If the molar ratio was changed to 5: 1 in 4 M KOH/MeOH solutions, the sulfur-rich manganese complex [Mn3(CO)9(-S2)2(-HS)]2─ (3) was produced. Cluster 1 could be converted into 2 or 3 by the treatment with CO or S powder in KOH/MeOH solutions. Cluster 2 could also react with S powder at high temperature or [Cu(MeCN)4]BF4 to transform into 3 and 1, while 3 was reconverted into 2 by the treatment with Mn2(CO)10 in KOH/MeOH solutions. Interestingly, if the reaction temperature of cluster 2 with S powder was changed to room temperature, the other complex [HMn3(CO)9(-S2)2(-S)]2─ (4) was formed. Complexes 3 and 4 were structural isomers upon heating kinetic product 4 could isomerize to the thermodynamic product 3. On the other hand, complex 3 could react with various oxidizing agents such as MeI, CH2Cl2, Mn(CO)Br, and [Cu(MeCN)4]BF4 to form complexes [Mn3(CO)9(-S2)(-HS)(-S2Me)]─ (5), [{Mn3(CO)9(-S2)2(-HS)}2(CH2)]2─ (6), [S5Mn4(CO)12]2─ (7), and [S4Mn3(CO)10]─ (8). The nature, transformation, reactivity, and electrochemical property of the resultant complexes are discussed and elucidated by DFT calculations.

    2. E/Fe/Cu/Hg/CO (E = S, Se, Te) System
    When 1D polymer [{Cu(dpy)(MeCN)2}{BF4}]n (dpy = 4,4'-dipyridine) (1) and chalcogen-containing mixed Fe─Hg carbonyl clusters, [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a];Te, [Et4N]2[2c]), were grinded in a molar ratio of 2: 1 via liquid-assisted grinding (LAG) method, two 1D polymers [{Cu(dpy)(MeCN)}2{{SFe3(CO)9}2Hg}]n (3) and [{Cu(dpy)(MeCN)2}2{{TeFe3(CO)9}2Hg}]n (4) were formed, respectively. In addition, the grinding of 1, [Et4N]2[{SeFe3(CO)9}2Hg] ([Et4N]2[2b]) or [Et4N]2[2c], and dpy in a 2: 1: 0.5 ratio led to the formation of the mixed 1D and 2D cation-anion polymers [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{EFe3(CO)9}2Hg}]n (E = Se, 5b; Te, 5c). Besides, the optical reflectance spectrum measurements showed that the band gaps of 3, 4, 5b, and 5c exhibited semi-conducting properties in the range of 1.36-1.67 eV . Furthermore, the formation and the optical properties are elucidated by DFT calculations.

    Keyword: cluster、S、Se、Te、Mn、Fe、Cu、Hg

    中文摘要...................................................................................................................................І 英文摘要..................................................................................................................................III 第一章 含硫之錳金屬團簇化合物之合成與其磁性、電化學、電子吸收光譜、結構轉換及理論計算..................................................................................................... 1 1.1 摘要......................................................................................................................... 1 1.2 前言...................…….............................................................................................. 3 1.3 結果與討論...............……...................................................................................... 5 1.3-1 S powder 與 Mn2(CO)10 於鹼性環境下反應...................................................... 5 1.3-2 團簇物 2 之hydride 性質.................................................................................... 8 1.3-3 化合物 1 可於鹼性條件下與不同小分子反應 (CO、硫元素)............................................................................................................................ 9 1.3-4 錯合物 2 與硫元素藉由溫度控制得到兩同分異構物之擴核產物................... 12 1.3-5 錯合物 3 之反應性探討....................................................................................... 13 1.3-6 錯合物 [Et4N[1]、[PPN]2[2]、[Et4N]2[4]、[Et4N][5] 及 [Et4N][7] 及相關團簇物之 X-ray 結構比較........................................................................................ 18 1.3-7 理論計算探討 (Density Functional Theory, DFT)................................................ 21 1.3-8 電化學研究 (Electrochemistry)............................................................................. 25 1.3-9 電子吸收光譜探討................................................................................................ 27 1.4 結論......................................................................................................................... 30 1.5 實驗部份 (Experimental Section) ......................................................................... 32 1.5-1 [Et4N][S2Mn3(CO)9] ([Et4N][1]) 的合成………………………………………... 33 1.5-2 [Et4N]2[HS2Mn3(CO)9] ([Et4N]2[2]) 的合成…………………………………..... 34 1.5-3 [Et4N]2[Mn3(CO)9(-S2)2(-HS)] ([Et4N]2[3]) 之合成……………………….... 34 1.5-4 [Et4N]2[HMn3(CO)9(-S2)2(-S)] ([Et4N]2[4]) 的合成………………………...... 35 1.5-5 [Et4N][Mn3(CO)9(-S2)(HS)(-S2Me)] ([Et4N][5])…………………...…….. 36 1.5-6 [Et4N]2[{Mn3(CO)93-S2)(3-HS2)(S)}2(CH2)] ([Et4N]2[6]) 的合成............... 37 1.5-7 [Et4N]2[S5Mn4(CO)12] ([Et4N]2[7]) 的合成........................................................... 38 1.5-8 [Et4N][S4Mn3(CO)10] ([Et4N][8]) 的合成.............................................................. 38 1.5-9 [Et4N][S2Mn3(CO)9] ([Et4N][1]) 的合成 ([Et4N]2[HS2Mn3(CO)9] ([Et4N]2[2]) 轉換至 [Et4N][S2Mn3(CO)9] ([Et4N][1])).............................................................. 39 1.5-10 [Et4N]2[HS2Mn3(CO)9] ([Et4N]2[2]) 的合成 ([Et4N][S2Mn3(CO)9] ([Et4N][1]) 轉換至 [Et4N]2[HS2Mn3(CO)9] ([Et4N]2[2]))........................................................ 39 1.5-11 [Et4N]2[Mn3(CO)9-HS)(-S2)2] ([Et4N]2[3]) 轉換至 [Et4N]2[HS2Mn3(CO)9] ([Et4N]2[2]).............................................................................................................. 40 1.5-12 [Et4N]2[HS2Mn3(CO)9] ([Et4N]2[2]) 轉換至 [Et4N]2[Mn3(CO)9(-HS)(-S2)2] ([Et4N]2[3]).............................................................................................................. 41 1.5-13 [Et4N][S2Mn3(CO)9] ([Et4N][1]) 轉換至 [Et4N]2[Mn3(CO)9(-HS)(-S2)2] ([Et4N]2[3]).............................................................................................................. 41 1.5-14 [Et4N]2[HMn3(CO)9(-S2)2(-S)] ([Et4N]2[4]) 轉換至 [Et4N]2[Mn3(CO)9(-HS)(S2)2] ([Et4N]2[3]) .................................................... 41 1.5-15 [Et4N]2[HS2Mn3(CO)9] 與 HCl 反應................................................................. 42 1.5-16 化合物 [PPN]2[2]、[Et4N][3]、[Et4N]2[5]、[Et4N]2[7] 之 X-ray 結構解析 42 1.5-17 電化學分析............................................................................................................. 43 1.5-18 理論計算................................................................................................................. 44 1.6 參考文獻................................................................................................................. 45 第二章 液體輔助固態研磨合成:含主族 (硫、硒、碲) 及過渡金屬 (鐵、汞、銅) 之聚合物與其光物理性質及理論計算探討.................... ........................................ 95 2.1 摘要......................................................................................................................... 95 2.2 前言......................................................................................................................... 97 2.3 結果與討論............................................................................................................. 98 2.3-1 兩當量 [{Cu(dpy)(MeCN)2}{BF4}]n (1) 與 [Et4N]2[{EFe3(CO)9}2Hg] (E = S, [Et4N]2[2a]; Se, [Et4N]2[2b]; Te, [Et4N]2[2c]) 反應.............................................. 98 2.3-2 兩當量 [{Cu(dpy)(MeCN)2}{BF4}]n (1) 與 [Et4N]2[{EFe3(CO)9}2Hg] (E = Se, [Et4N]2[2b]; Te, [Et4N]2[2c]) 及 0.5 當量 dpy …….................................................................................................................. 101 2.3-3 聚合物 4 與 聚合物 5c 間之轉換.................................................................... 104 2.3-4 聚合物 3、4、5b 及 5c 之 X-ray 結構................................................................ 105 2.3-5 聚合物 1、3、4、5b 及 5c 與團簇物 2a─2c 之 X-ray 結構比較..................... 109 2.3-6 反射式電子吸收光譜及理論計算探討................................................................. 111 2.4 結論......................................................................................................................... 115 2.5 實驗部份................................................................................................................. 116 2.5-1 [{Cu(MeCN)2(dpy)}{BF4}]n (1)之合成................................................................. 116 2.5-2 [{Cu(dpy)(MeCN)}2{[SFe3(CO)9]2Hg}]n (3) 之合成............................................ 117 2.5-3 [{Cu(dpy)(MeCN)2}2{[TeFe3(CO)9]2Hg}]n (4) 之合成......................................... 118 2.5-4 [{Cu(dpy)(MeCN)2}2{Cu(dpy)1.5(MeCN)}2{[SeFe3(CO)9]2Hg}2]n (5b) 之合成.. 119 2.5-5 [{Cu(dpy)(MeCN)2}2{Cu(dpy)1.5(MeCN)}2{[TeFe3(CO)9]2Hg}2]n (5c) 之合成.. 122 2.5-6 聚合物 4 與聚合物 5 之轉換............................................................................. 123 2.5-7 聚合物 3、4、5b、5c 之 X-ray 結構解析............................................................. 124 2.5-8 電子吸收光譜之方法........................................................................................... 124 2.5-9 理論計算................................................................................................................ 125 2.6 參考文獻................................................................................................................. 126 附錄 其他反應................................................................................................................ 155 A.1 實驗部份 156 A.1-1 化合物 [Et4N]2[{TeFe3(CO)9}2CuHg2Fe(CO)4]2 ([Et4N]2[1]) 之合成 157 A.1-2 聚合物 [{[Cu(dpy)(MeCN)2]4{[SeFe3(CO)9]2Hg}2]n (2) 之合成 157 A.1-3 聚合物 [Cu2(MeCN)2(bpea)3][S2Fe5(CO)14]n (3) 之合成 157 A.1-4 聚合物 [Cu(bpea)]4[{SFe3(CO)9}2]n (4) 之合成 158 A.1-5 合物 [PPN]2[Se2Cr2Fe2(CO)12] ([PPN]2[5]) 之合成 159 A.1-6 化合物 [Et4N]2[1]、2、3、4 及 [PPN]2[5] 之 X-ray 結構解析 159 A.2 參考文獻 160

    1.6 參考文獻
    (1) (a) Ogino, H.; Inomata, S.; Tobita, H. Chem. Rev. 1998, 98, 2093−2121. (b) Femoni, C.; Iapalucci, M. C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580−1604. (c) Richmond, M. G. Coord. Chem. Rev. 2005, 249, 2763−2782.
    (2) (a) Anson, C. E.; Eichhöfer, A.; Issac, I.; Fenske, D.; Fuhr, O.; Sevillano, P.; Persau, C.; Stalke, D.; Zhang, J. Angew. Chem., Int. Ed. 2008, 47, 1326−1331. (b) Dehnen, S.; Eichhöfer, A.; Fenske, D. Eur. J. Inorg. Chem. 2002, 279−317.
    (3) (a) Huang, K.-C.; Tsai, Y.-C.; Lee, G.-H.; Peng, S.-M.; Shieh, M. Inorg. Chem. 1997, 36, 4421−4425. (b) Adams, R. D.; Miao, S. J. Organomet. Chem. 2003, 665, 43−47. (c) Adams, R. D.; Kwon, O.-S.; Miao, S. Acc. Chem. Res. 2005, 38, 183−190. (d) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2001, 40, 5322−5323. (e) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2002, 41, 6281−6290. (f) Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem., Int. Ed. Engl. 1997, 36, 1854−1856. (g) Fang, Z.-G.; Hor, T. S. A.; Mok, K. F.; Ng, S.-C.; Liu, L.-K.; Wen, Y.-S. Organometallics 1993, 12, 1009−1011.
    (4) (a) Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1710−1712. (b) O’Neal, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134−3138.
    (5) (a) Belletti, D.; Graiff, C.; Pattacini, R.; Predieri, G.; Tiripicchio, A. Eur. J. Inorg. Chem. 2004, 3564−3569. (b) Reyes-Lezama, M.; Höpfl, H.; Zúñiga-Villarreal, N. Organometallics 2010, 29, 1537−1540.
    (6) (a) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Lin, S.-F.; Ueng, C.-H. Chem.−Eur. J. 2001, 7, 3152−3158. (b) Shieh, M.; Chen, H.-S.; Yang, H.-Y.; Ueng, C.-H. Angew. Chem., Int. Ed. 1999, 38, 1252−1254.
    (7) (a) Shieh, M.; C.-H. Ho, W.-S. Sheu and H.-W. Chen, J. Am. Chem. Soc. 2010, 132, 4032−4033. (b) C.-H. Ho, Y.-Y. Chu, C.-N. Lin, H.-W. Chen, C.-Y. Huang and M. Shieh Organometallics 2010, 29, 4396─4405.
    (8) 李旻憲,國立師範大學碩士論文,2010
    (9) (a) Ma, Y. Q.; Yu, L.; Hu, C. S.; Chen, X.; Li, J.; Wang, H. G.;Miguel, D. J. Mol. Struct. 2003, 650, 45–48. (b) Ma, Y.-Q.; Yin, N.; Li, J.;Xie, Q.-L.; Miguel, D. J. Organomet. Chem. 2004, 689, 1949–1955.
    (10) 謝明惠,劉郁欣,未發表之結果。
    (11) W.A. Herrmann J. Organomet. Chem. 1990, 383, 21–44.
    (12) 游翔竣,國立師範大學碩士論文,2013
    (13) Adams, R. D.; Kwon, O-S.; Smith, M. D. Organometallics 2002, 21, 1960–1965.
    (14) 謝明惠,朱晏頤,未發表之結果。
    (15) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds, Wiley, New York, 1986.
    (16) Gordon, A. J.; Ford, A. The Chemist's Companion.; Wiley: New York, 1972, p445.
    (17) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90–92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottoey, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827–1837.
    (18) 繆佳曄,國立台灣師範大學博士論文,2011。
    (19) Blessing, R. H., Acta Crystallogr., Sect. A 1995, 51, 33─38.
    (20) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
    (21) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155–2160. (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
    (22) Gaussiun Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    (23) (a) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187−196. (b) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, 2007.

    2.6 參考文獻
    (1) (a) Lasanta, T.; Olmos, M. E.; Laguna, A.; López-de-Luzuriaga, J. M.; Naumov, P. J. Am. Chem. Soc. 2011, 133, 16358─16361. (b) Koshevoy, I. O.; Chang, Y.-C.; Karttunen, A. J.; Haukka, M.; Pakkanen, T.; Chou, P.-T. J. Am. Chem. Soc. 2012, 134, 6564─6567. (c) Libri, S.; Mahler, M.; Espallargas, G. M.; Singh, D. C. N. G.; Soleimannejad, J.; Adams, H.; Burgard, M. D.; Rath, N. P.; Brunelli, M.; Brammer, L. Angew. Chem., Int. Ed. 2008, 47, 1693─1697. (d) Mo, L.-Q.; Jia, J.-H.; Sun, L.-J.; Wang, Q.-M. Chem. Commun. 2012, 48, 8691─8693.
    (2) (a) Braga, D.; Giaffreda, S. L.; Grepioni, F.; Pettersen, A.; Maini, L.; Curzi, M.; Polito, M. Dalton Trans. 2006, 1249─1263. (b) Friščić, T.; Jones, W. Cryst. Growth Des. 2009, 9, 1621─1637. (c) Friščić, T. Chem. Soc. Rev. 2012, 41, 3493─3510. (d) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41, 413─447.
    (3) (a) Kole, G. K.; Vittal, J. J. Chem. Soc. Rev. 2013, 42, 1755─1775. (b) Friščić, T.; Halasz, I.; Štrukil, V.; Eckert-Maksić, M.; Dinnebier, R. E. Croat. Chem. Acta 2012, 85, 367─378. (c) Vittal, J. J. Coord. Chem. Rev. 2007, 251, 1781─1795.
    (4) (a)K. S. Min, M. P. Suh J. Am. Chem. Soc. 2000, 122, 6834─6840. (b)L Hashemi, A Morsali RSC Adv., 2014, 4, 17265–17267.
    (5) (a) Frišččić, T.; Fábián L. CrystEngComm 2009, 11, 743–745. (b) Leigh Loots; Helene Wahl; Leandi Van Der Westhuizen; Delia A. Haynes; Tanya Le Roex Chem. Commun., 2012, 48, 11507–11509.
    (6) A. S. Batsanov; M. J. Begley; P. Hubberstey; J. Stroud, J. Chem. Soc. Dalton Trans. 1996, 1947–1957.
    (7) (a) Miu, C.-Y; Chi, H.-H; Chen, S.-W, Cherng, J.-J; Hsu, M.-H; Huang, Y.-X, Shieh, M. New J. Chem. 2011, 35, 2442–2455. (b) Tsai, Y.-C.; Shieh, M. Inorg. Chem. 1994, 33, 2303–2305. (c) 陳彥銘,國立師範大學碩士論文,2010
    (8) 謝明惠,黃宗毅,未發表之結果。
    (9) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds, Wiley, New York, 1986.
    (10) Gordon, A. J.; Ford, A. The Chemist's Companion.; Wiley: New York, 1972, p445.
    (11) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90–92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottoey, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827–1837.
    (12) Blessing, R. H., Acta Crystallogr., Sect. A 1995, 51, 33─38.
    (13) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
    (14) (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W., Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
    (15) Cao, G.; Rabenberg, L. K.; Nunn, C. M.; Mallouk, T. E. Chem. Mater. 1991, 3, 149─156.
    (16) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155–2160. (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
    (17) Gaussiun Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
    (18) (a) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187−196. (b) Gorelsky, S. I. AOMix: Program for Molecular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, 2007.

    A.2 參考文獻:
    (1) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds, Wiley, New York, 1986.
    (2) Gordon, A. J.; Ford, A. The Chemist's Companion.; Wiley: New York, 1972, p445.
    (3) (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90–92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottoey, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827–1837.
    (4) (a) Markó, L.; Takács, J.; Papp, S.; Markó-Monostory, B. Inorg. Chim. Acta 1980, 45, L189─L190. (b) Markó, L.; Takács, J. Inorg. Synth. 1989, 26, 243─246. (c) Fischer, K.; Deck, W.; Schwarz, M.; Vahrenkamp, H. Chem. Ber. 1985, 118, 4946─4964. (d) Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. M.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 4392─4401.
    (5) (a) Tsai, Y.-C.; Shieh, M. Inorg. Chem. 1994, 33, 2303–2305. (b) 陳彥銘,國立師範大學碩士論文,2010
    (6) Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33─38.
    (7) Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.

    無法下載圖示 本全文未授權公開
    QR CODE