簡易檢索 / 詳目顯示

研究生: 蘇南州
論文名稱: 哈格比颱風(2008)雨帶結構與演變之模擬研究
A numerical study on rainband structure and evolution of Typhoon Hagupit (2008)
指導教授: 王重傑
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 哈格比颱風颱風雨帶雨帶生成主雨帶
DOI URL: https://doi.org/10.6345/NTNU202203439
論文種類: 學術論文
相關次數: 點閱:203下載:72
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的研究顯示,機載雷達所觀測的2008年哈格比颱風,其主雨帶具有較不一樣的結構特徵。為了對其有進一步的了解,本研究利用CReSS模式對本個案進行模擬,重現哈格比颱風雨帶的結構與演變,並探討其生成的機制。模擬的結果顯示,主雨帶的風場結構同時具有內、外雨帶的特徵;對流結構與外雨帶相似,向上向內傾斜,層狀降水區域則發生在雨帶內側。雨帶在徑向的移動上,於生成初期,並沒有明顯的移動;雨帶發展成熟後,則明顯向外移動,速度為4.72~6.1 m⋅s-1。
    本研究個案的三個雨帶,具有類似的生成機制。舊有內雨帶外側的下沉氣流,使得空氣於近地表處堆積,造成近地表水平輻散。雨帶和其外側輻散區隨著時間相對於颱風中心向外(東)移動的過程中,氣流向外加速,並且輻散區的前緣亦使得氣流向外加速。向外加速的風場與環境氣流產生合流,進一步產生輻合,並激發出雨帶。由於雨帶走向主要為切向方向,本研究從圓柱座標的徑向運動方程,討論各作用力對於徑向風速加速的貢獻,結果顯示,不論擾動氣壓梯度力,離心力和科氏力,皆在雨帶生成之前,對於徑向風的加速產生正的貢獻。綜合以上顯示,雨帶之間的交互作用是影響雨帶發展的重要因素之一。

    致謝 Ⅰ 摘要 Ⅱ 目錄 Ⅲ 圖表目錄 V 第一章 前言 1 1.1 文獻回顧 1 1.2 研究動機 5 1.3 論文架構 7 第二章 資料來源與研究方法 8 2.1資料來源 8 2.2研究方法 9 2.3模式簡介 12 2.4 模式設定 17 第三章 個案簡介 18 3.1哈格比颱風簡介 18 3.2哈格比颱風的主雨帶 19 第四章 模擬結果 22 4.1颱風路徑與風速 22 4.2颱風雨帶發展 23 第五章 雨帶的分析 27 5.1雨帶簡介 27 5.2雨帶的徑向移動 28 5.3雨帶的垂直結構 30 5.4雨帶的底層輻合輻散 32 第六章 雨帶的生成 33 6.1雨帶的生成機制 33 6.2西風加速與作用力的關係 42 第七章 結論 53 參考文獻 56 圖表 61

    Akter, N., and K. Tsuboki, 2012: Numerical simulation of Cyclone Sidr using a Cloud-Resolving model: Characteristics and formation process of an outer rainband. Mon. Wea. Rev., 140, 789–810.

    Barnes, G. M., E. J. Zipser, D. P. Jorgensen, and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125–2137.

    Bell, M. M., and M. T. Montgomery, 2010: Sheared deep vertical convection in pre-depression Hagupit during TCS08. Geophys. Res. Lett., 37, L06802.

    Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573–1592.

    Cotton, W. R., G. J. Tripoli, R. M. Rauber and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680.

    Davis, C., and L. F. Bosart, 2001: Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon. Wea. Rev., 129, 1859–1881.

    Fujita, T. T., 1978: Manual of downburst identification for project NIMROD. Satellite and Mesometeorology Research Paper 156, Dept. of Geophysical Sciences, University of Chicago, 104 pp.

    Gall, R., J. Tuttle, and P. Hildebrand, 1988: Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin. Mon. Wea. Rev., 126, 1749–1766.

    Hence, D. A., and R. A. Houze Jr., 2008: Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005). J. Geophys. Res., 113, D15108.

    Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293-344.

    Houze, R. A., Jr., and Coauthors, 2006: The hurricane rainband and intensity change experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 1503–1521.

    Ikawa, M. and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Technical Report of the MRI, 28, 238pp.

    Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner-core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287–1311.

    Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci., 35, 1070–1096.

    Kurihara, Y., 1976: On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33, 940–958.

    Lee, T. F., F. J. Turk, J. Hawkins, and K. Richardson, 2002: Interpretation of TRMM TMI images of tropical cyclones. Earth Interact., 6, doi:10.1175/1087-3562(2002)006,0001:IOTTIO.2.0.CO;2.

    Lee, W.-C., R. M. Wakimoto, and R. E. Carbone, 1992: The evolution and structure of a ‘‘bow-echo-microburst’’ event. Part II: The bow echo. Mon. Wea. Rev., 120, 2211–2225.

    Li, Q., and Y. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 2782–2805.

    Lin, Y. L., R. D. Farley and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    May, P. T., 1996: The organization of convection in the rainbands of Tropical Cyclone Laurence. Mon. Wea. Rev., 124, 807–815.

    May, P. T., and G. J. Holland, 1999: The role of potential vorticity generation in tropical cyclone rainbands. J. Atmos. Sci., 56, 1224–1228.

    Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud - The 19 July 1981 CCOPE cloud. J. Meteor. Soc. Japan, 68, 107–128.

    Murakami, M., T. L. Clark and W. D. Hall 1994: Numerical simulations of convective snow clouds over the Sea of Japan; Two-dimensional simulations of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 43–62.

    Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918–938.

    Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong long-lived squall lines. J. Atmos. Sci., 45, 463–485

    Senn, H. V., and H. W. Hiser, 1959: On the origin of hurricane spiral rain bands. J. Meteor., 16, 419–426.

    Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394.

    Shimizu, S., H. Uyeda, Q. Moteki, T. Maesaka, Y. Takaya, K. Akaeda, T. Kato, and M. Yoshizaki, 2008: Structure and formation mechanism on the 24 May 2000 supercell-like storm developing in a moist environment over the Kanto Plain, Japan. Mon. Wea. Rev., 136, 2389–2407.

    Spencer, R. W., H. M. Goodman, and R. E. Hood, 0: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254–273.

    Tang, X., W. -C. Lee, M. Bell, 2014: A squall-line-like principal rainband in typhoon Hagupit (2008) observed by airborne doppler radar. J. Atmos. Sci., 71, 2733–2746

    Wakimoto, R. M., H. V. Murphey, A. Nester, D. P. Jorgensen, and N. T. Atkins, 2006a: High winds generated by bow echoes. PartI: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 2793–2812.

    Wakimoto, R. M., H. V. Murphey, C. A. Davis, and N. T. Atkins, 2006b: High windsgenerated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 2813–2829.

    Wang, C.-C., H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang, and C.-H. Liu, 2013: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol. (2013), http://dx.doi.org/10.1016/j.jhydrol.2013.02.018

    Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273.

    Weisman, M. L., 2001: Bow echoes: A tribute to T. T. Fujita. Bull.Amer. Meteor. Soc., 82, 97–116.

    Willoughby, H. E., 1977: Inertia-buoyancy waves in hurricanes. J. Atmos. Sci., 34, 1028–1039.

    Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183–191.

    Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropicalcyclones. J. Atmos. Sci., 47, 242–264.

    Willoughby, H. E., F. D. Marks, and R. Feinberg, 1984: Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189–3211.

    Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyes, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.

    Wimmers, A. J., and C. S. Velden, 2007: MIMIC: A new approach to visualizing satellite microwave imagery of tropical cyclones. Bull. Amer. Meteor. Soc., 88, 1187–1196.

    Wu, C. -C., and Y. -H. Kuo, 1999: Typhoons affecting Taiwan: current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.
    Yu, C.-K., and C.-L. Tsai, 2010: Surface pressure features of landfalling typhoon rainbands and their possible causes. J. Atmos. Sci., 67, 2893–2911.

    Yu, C.-K., and Y. Chen, 2011: Surface fluctuations associated with tropical cyclone rainbands observed near Taiwan during 2000–08. J. Atmos. Sci., 68, 1568–1585.

    Yu, C.-K., and C.-L. Tsai, 2013: Structural and surface features of arcshaped radar echoes along an outer tropical cyclone rainband. J. Atmos. Sci., 70, 56–72.

    下載圖示
    QR CODE