研究生: |
魏庚生 Wei, Geng-Sheng |
---|---|
論文名稱: |
28 GHz I/Q調變器與單邊帶混頻器設計 Design of a 28 GHz I/Q Modulator and a Single-Sideband Mixer |
指導教授: |
蔡政翰
Tsai, Jeng-Han |
口試委員: | 楊弘源 李威璁 蔡政翰 |
口試日期: | 2022/01/07 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 互補式金氧半導體製程 、I/Q調變器 、單邊帶混頻器 、鏡像拒斥比 |
英文關鍵詞: | Complementary Metal Oxide Semiconductor (CMOS), I/Q Modulator, Single-Sideband Mixer (SSB Mixer), Image Rejection Ratio (IRR) |
研究方法: | 實驗設計法 、 紮根理論法 、 主題分析 |
DOI URL: | http://doi.org/10.6345/NTNU202200330 |
論文種類: | 學術論文 |
相關次數: | 點閱:131 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著第五代行動通訊技術的發展,毫米波升降頻收發機扮演著重要的角色,其中發射機需將基頻訊號升頻至毫米波頻段後,再透過相位陣列(Phased Array)天線進行無線傳輸,因此調變器與混頻器成為不可或缺的元件。近年來得益於互補式金氧半導體製程(CMOS)的進步,CMOS具有低功率消耗、低成本及高整合度的優勢,且已經可以與大部分的射頻電路整合在一塊。本論文將使用TSMC 90-nm CMOS RF製程與TSMC 65-nm CMOS RF製程,設計實現28 GHz I/Q調變器與單邊帶混頻器。
第一個電路為28 GHz I/Q調變器,以I/Q調變訊號的方式饋入兩顆混頻器來消除鏡像訊號,並透過加入匹配來達成寬頻的鏡像拒斥比。量測與模擬之特性貼近。當電晶體偏壓為0.35 V,LO驅動功率為3 dBm時,頻帶為25~32 GHz,增益範圍為-9.4 ± 0.5 dB,鏡像拒斥比則有-30 dBc,整體晶片佈局面積為730 μm × 700 μm。
第二個電路為28 GHz單邊帶混頻器,藉由給予兩顆混頻器正交訊號,將相位差180°的輸出訊號合成後,會達到鏡像抑制之功能。由於LO端匹配電容對於製程變異相當敏感,因此最後實現的單邊帶混頻器有頻飄的狀況。當電晶體偏壓為0.35 V,LO驅動功率為3 dBm時,頻帶為23~28 GHz,增益範圍為-22.5 ± 0.5 dB,鏡像拒斥比則有-30 dBc,整體晶片佈局面積為755 μm × 730 μm。
As the progress of the fifth-generation mobile communication technology, millimeter wave transceivers play an important role, the transmitters need to up-convert the baseband signal to the millimeter wave frequency band and then perform wireless transmission through a phased array antenna design. Therefore, modulators and mixers become indispensable components. Recently, thanks to advances in Complementary Metal Oxide Semiconductor (CMOS) process. The modern CMOS process has the advantages of low power consumption, low cost and high integration, and it is suitable for the implementation of the RF circuits. In this thesis, a 28 GHz I/Q Modulator and a Single-Sideband Mixer (SSB Mixer) are presented, and implemented in TSMC 90-nm CMOS RF technology and TSMC 65-nm CMOS RF technology, respectively.
The first circuit is a 28 GHz I/Q modulator, which eliminates the image signal by applying I/Q modulation signals into two mixers, and achieves a wide-band image rejection ratio by adding matching network. The characteristics of measurement and simulation have good agreement. When the gate bias is 0.35 V and LO drive power is 3 dBm, the conversion gain is -9.4 ± 0.5 dB from 25 to 32 GHz with the image rejection ratio of -30 dBc. The chip size is 730 μm × 700 μm.
Second, a 28 GHz SSB Mixer has designed and implemented. By applying quadrature signals into two mixers, the two output signals with 180° phase difference are combined to achieve the image suppression function. However, the LO matching capacitor is sensitive to the process variation. Therefore, the SSB Mixer frequency shifted. When the gate bias is 0.35 V and LO drive power is 3 dBm, the conversion gain is -22.5 ± 0.5 dB from 23 to 28 GHz with the image rejection ratio of -30 dBc. The chip size is 755 μm × 730 μm.
[1] D. Goovaerts, FCC unanimously opens nearly 11 GHz of spectrum for 5G [Online], Available:https://www.ecnmag.com/news/2016/07/fcc-unanimously-opens-nearly-11-ghz-spectrum-5g, 2016
[2] J. H. Tsai, and T. W. Huang, “35-65-GHz CMOS Broadband Modulator and Demodulator With Sub-Harmonic Pumping for MMW Wireless Gigabit Applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
[3] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J.G.J. Chern, “Design and analysis of CMOS broad-band compact highlinearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006
[4] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbertcell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350-1360, May 2011.
[5] S.-H. Weng, C.-H. Shen, H.-Y. Chang, “A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications,” in Proc. 7th EuMIC, Oct. 2012, pp. 8-11.
[6] W.-H. Lin, W.-L. Chang, J.-H. Tsai, T.-W. Huang, “A 30–60 GHz CMOS sub-harmonic IQ de/modulator for high data-rate communication system applications,” in IEEE Radio Wireless Symp. Dig., Jan. 2009, pp. 462-465.
[7] A. P. Freundorfer, K. Hamed, Y. Sun, Y. Antar, P. Frank, and D. Sawatzky, “A direct digital 2 Gb/s modulator/demodulator experiment in GaAs HBT at 30 GHz,” in Proc. Asia–Pacific Microw. Conf., Dec. 2006, pp. 1611–1614.
[8] H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30–50 GHz Wide Modulation Bandwidth Bidirectional BPSK Demodulator/ Modulator With Low LO Power,” IEEE Microw. Wireless Compon. Lett., vol. 19, pp. 332-334, May 2008.
[9] M. Frounchi, A. Alizadeh, C. T. Coen and J. D. Cressler, "A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5336-5346, Dec. 2018
[10] M. Huang, T. Chi, F. Wang, S. Li, T. Huang and H. Wang, "A 24.5-43.5GHz Compact RX with Calibration-Free 32-56dB Full-Frequency Instantaneously Wideband Image Rejection Supporting Multi-Gb/s 64-QAM/256-QAM for Multi-Band 5G Massive MIMO," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 275-278
[11] F. Zhu, K. Wang and K. Wu, "Design Considerations for Image-Rejection Enhancement of Quadrature Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 216-218, March 2019
[12] W. Lin, J. Tsai, J. Cheng, W. Lin, T. Chiang and T. Huang, "A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 1024-QAM With a Process-Variation-Tolerant Design," in IEEE Access, vol. 8, pp. 74458-74471, 2020.
[13] 黃絹容,Ka頻帶升頻混頻器與I/Q調變器設計與實現,國立臺灣師範大學電機工程學系研究所碩士論文,2016年
[14] 林禎芳,38 GHz可變增益放大器與單邊帶混頻器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2019年
[15] 童義倫,38 GHz 鏡像抑制混頻器與可變增益放大器設計,國立臺灣師範大學電機工程學系研究所碩士論文,2020年
[16] Cavers, J.K.; Liao, M.W.; , “Adaptive compensation for imbalance and offset losses in direct conversion transceivers,” Vehicular Technology, IEEE Transactions on , vol.42, no.4, pp.581-588, Nov 1993 doi: 10.1109/25.260752
[17] C. Chen, J. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using
Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless
Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
[18] J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, W.-C. Huang, and H. Wang, “A 25–75-GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007.
[19] F. Zhang, E. Skafidas and W. Shieh, "A 60-GHz double-balanced Gilbert cell do wn-conversion mixer on 130-nm CMOS", IEEE RFIC Symp. Dig., pp. 141-144, 20 07-Jun.
[20] C.-S. Lin, P.-S. Wu, H.-Y. Chang and H. Wang, " A 9–50-GHz Gilbert-cell down -conversion mixer in 0.13- CMOS technology ", IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May 2006.
[21] C.-C. Kuo, C.-L. Kuo, C.-J. Kuo, S.-A. Maas, and H. Wang, “Novel mInIature and broadband millimeter-wave monolithic star mixers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 793–802, Apr. 2008.
[22] J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18- m CMOS technology,”inIEEE MTT-SInt.Microw.Symp.Dig. 2010.pp784-787
[23] T. Chang and J. Lin, 11 GHz ultra-wideband resistive ring mixer in 0.18- CMOS technology ", IEEE RFIC Symp. Dig., 2006-Jun.
[24] I. C. H. Lai, and M. Fujishima, “An Integrated 20-26 GHz CMOS Up-Conversion Mixer with Low Power Consumption,” 2006 Proceedings of the 32nd European Solid-State Circuits Conference., Montreux, Switzerland, Sep. 2006, pp. 400-403.
[25] C. Huynh, J. Lee, and C. Nguyen, “A K-band SiGe BiCMOS fully integrated up-conversion mixer,” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, South Korea, Nov. 2013, pp. 185-187.
[26] M. J. Zeng, and R. M. Weng, “A 0.8V 4.3mW sub-harmonic mixer for ultra-wideband systems,” 2012 IEEE International Symposium on Circuits and Systems., Seoul, Korea, May. 2012, pp. 1927-1930.
[27] H. K. Chiou, S. C. Kuo, and H. Y. Chung, “14-30 GHz low-power sub-harmonic single-balanced gate-pumped mixer with transformer combiner in 0.18 μm CMOS,” in Electronics Letters., vol. 50, no. 16, pp. 1141-1143, Jul. 2014.
[28] C. Chen, J. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
[29] J. Hsieh, T. Wang and S. Lu, "A 90-nm CMOS V-Band Low-Power Image-Reject Receiver Front-End With High-Speed Auto-Wake-Up and Gain Controls," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 541-549, Feb. 2016.
[30] M. Frounchi, C. Coen, C. D. Cheon, N. Lourenco, W. Williams and J. D. Cressler, "A V-Band SiGe Image-Reject Receiver Front-End for Atmospheric Remote Sensing," 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, 2018, pp. 223-226.
[31] M. Frounchi, A. Alizadeh, C. T. Coen and J. D. Cressler, "A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5336-5346, Dec. 2018
[32] M. Huang, T. Chi, F. Wang, S. Li, T. Huang and H. Wang, "A 24.5-43.5GHz Compact RX with Calibration-Free 32-56dB Full-Frequency Instantaneously Wideband Image Rejection Supporting Multi-Gb/s 64-QAM/256-QAM for Multi-Band 5G Massive MIMO," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 275-278
[33] F. Zhu, K. Wang and K. Wu, "Design Considerations for Image-Rejection Enhancement of Quadrature Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 216-218, March 2019
[34] J. Tsai, "Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 670-678, March 2012