研究生: |
陳毅睿 Chen, Yi-Rui |
---|---|
論文名稱: |
遠域颱風對臺灣東北龍洞海域降溫之影響 Influences of far field typhoons on the coolings surrounding Longdong of northeastern Taiwan |
指導教授: |
鄭志文
Zheng, Zhe-Wen |
口試委員: |
葉庭光
Yeh, Ting-Kuang 張明輝 Chang, Ming-Huei 鄭志文 Zheng, Zhe-Wen |
口試日期: | 2022/09/20 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 潮汐 、颱風 、區域海洋模擬系統模式( ROMS ) 、上層海洋響應 、黑潮入侵 、龍洞 |
英文關鍵詞: | tide, typhoons, Regional Ocean Modeling System ( ROMS ), upper ocean response, Kuroshio intrusion, Longdong |
研究方法: | 實驗設計法 、 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202201646 |
論文種類: | 學術論文 |
相關次數: | 點閱:133 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
颱風生成於廣大的熱帶海洋上,當其經過海洋時,沿著颱風附近的海表面溫度,會因颱風的經過而有明顯的海表溫下降,並且前人文獻指出颱風造成海表降溫通常發生在颱風行進路徑右側附近( Price, 1981 )。然而,我們通過龍洞氣象浮標過去20年 ( 1998至2017年)的連續觀測資料,發現行經呂宋海峽的遠域颱風多次在遠在颱風軌跡420 km外的龍洞海域造成6 ℃以上的降溫,為了釐清其中的機制,本研究使用區域海洋模擬系統模式 ( Regional Ocean Modeling System, ROMS ),模擬2001年至2018年具備類似路徑之6個颱風案例,分別為2001年的尤特( Utor )、2003年的杜鵑( Dujuan )、2005年的珊瑚( Sanvu )、2011年的南瑪都( Nanmadol )、2013年的天兔( Usagi )及2016年的莫蘭蒂( Meranti );並搭配龍洞潮位站之潮位資料與浮標之海溫資料對模擬進行驗證,系統性分析遠域颱風在龍洞地區造成上層海洋冷卻響應之過程。此外,由於龍洞位於近岸區域,潮汐作用對颱風引起冷卻響應過程可能造成之影響,亦為此研究欲釐清之重點。
研究結果顯示,遠域颱風在龍洞引發較為強烈之降溫,主要透過颱風引起臺灣東北海域黑潮入侵之機制,並且,敏感度實驗顯示,臺灣東北海域當地風力為決定黑潮入侵是否形成之關鍵因素。同時,結果亦顯示,在未加入潮汐作用之實驗當中,颱風引起降溫在六個研究範例當中平均較觀測資料弱6.8 °C。在納入潮汐作用後,颱風引起近岸區域降溫趨於強烈,與觀測資料對比,溫度平均差異大幅度縮小至1.0 °C,整體而言,納入潮汐作用後,颱風引起近岸區域降溫之過程模擬獲得系統性改善。最後,透過系統性分析發現,加入潮汐作用主要透過底下機制增強颱風引起上層海洋降溫之過程,包含: (1) 在半個潮汐週期性振盪內會有上升流,因此潮汐作用可以加強上升流的強度,而且潮汐混合會破壞水體分層,提供有利環境供次層冷水上升,加上颱風通過時造成此區的強烈的上層混合和上升流,更容易使冷水抬升至較淺的水層、(2) 潮流與海底地形的交互作用,導致底部水層動能增強且底部應力增大。此外,底部應力也可以驅動額外的底部艾克曼傳輸( Bottom Ekman transport ),弱化底部水體分層,容易產生較強的上升流,進而使颱風通過後造成的海表降溫更強、(3) 龍洞次表層的南向潮餘流引發向下的底部艾克曼流( Bottom Ekman flow ),造成底部向東的艾克曼傳輸( Bottom Ekman transport ),而後因海底地形的關係,在離岸約20公里處產生向上的流,整體構成一逆時針環流,由於該區域上下翻轉流作用,使潮餘溫呈現次層水冷卻而下層水增溫之情形。綜合上述效應,我們建議後續在模擬颱風對近岸上層海洋冷卻響應時,納入潮汐作用可相當程度改善近岸降溫之情形並使之更符合真實之海洋狀態。
Typhoons are generated on the vast tropical ocean. When they pass through the ocean, the sea surface temperature (SST) might decrease significantly due to their passages. In addition, previous literatures point out that the SST drop usually occurs at the right side of the typhoon trajectory. However, in this study, through the continuous measurement of SST by Longdong weather buoy in the past 20 years (1998-2017), we found that the far field typhoons passing through the Luzon Strait repeatedly caused SST drop more than 6℃surrounding the Longdong sea area. To clarify the possible mechanism(s), this study uses the Regional Ocean Modeling System (ROMS) to simulate the oceanic environment corresponding to 6 far field typhoon cases with similar tracks occurred from 2001 to 2016. They are typhoons Utor ( 2001 ), Dujuan ( 2003 ), Sanvu ( 2005 ), Nanmadol ( 2011 ), Usagi ( 2013 ), and Meranti ( 2016 ). The simulations are validated by the sea levels data from in-situ tidal gauges of Longdong tide station and continuous temperature measured by moored buoy, and the processes of the upper ocean cooling response caused by far field typhoons in Longdong sea area are systematically analyzed.
The results show that the strong cooling caused by the far field typhoon in Longdong is mainly through the mechanism of the Kuroshio intrusion. In addition, the local wind surroudning Northeast of Taiwan is the key factor determining the occurrence of Kuroshio intrusion or not. Moreover, in the experiments without tidal effect, the average temperature difference is 6.8℃, which is much weaker relative to in-situ measurements. After including tidal effect, the temperature drops in the nearshore resion tend to be strong. Compared with the in-situ data, the average temperature difference significantly reduces to 1℃. In general, after the tidal effect is included, the simulations of temperature drops in the nearshore region caused by typhoon have been systematically improved. Finally, through systematic analysis, it’s shown that, the addition of tidal effect enhances the cooling process through mainly the underlying mechanism. (1) Tidal mixing can de-stratify the water column and provide a favorable environment for cold water to rise. Consequentially, upper ocean mixing and stronger upwelling allow enhanced SST drop. (2) The interaction between tidal currents and bottom topography results in enhanced bottom kinetic energy and bottom stress. (3) The southward tidal residual current in the subsurface of Longdong caused a downward bottom Ekman flow. Then, due to the bottom topography, an upward flow was generated about 20 kilometers offshore, forming a counterclockwise circulation. This process leads to tidal residual temperature getting cold at the top and warm at the bottom. Finally, it is suggested that, for simulating the response of upper ocean cooling to typhoon passages at nearshore regions, including tidal effect can provide a more comprehensive understanding about the process of occurrence of SST cooling to typhoon passage.
Babin, S. M., Carton, J. A., Dickey, T. D., & Wiggert, J. D. (2004). Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. Journal of Geophysical Research: Oceans, 109(C3).
Bender, M. A., & Ginis, I. (2000). Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Monthly Weather Review, 128(4), 917–946.
Bender, M. A., Ginis, I., & Kurihara, Y. (1993). Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. Journal of Geophysical Research: Atmospheres, 98(D12), 23245–23263.
Blanke, B., Roy, C., Penven, P., Speich, S., McWilliams, J., & Nelson, G. (2002). Linking wind and interannual upwelling variability in a regional model of the southern Benguela. Geophysical Research Letters, 29(24), 41-1-41–44.
Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smyth, P., & Ghil, M. (2007). Cluster Analysis of Typhoon Tracks. Part I: General Properties. Journal of Climate, 20(14), 3635–3653.
Chuang, W.-S., & Liang, W.-D. (1994). Seasonal variability of intrusion of the Kuroshio water across the continental shelf northeast of Taiwan. Journal of Oceanography, 50(5), 531–542.
Cummings, J. A. (2005). Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society, 131(613), 3583–3604.
D’Asaro, E. A., Black, P. G., Centurioni, L. R., Chang, Y.-T., Chen, S. S., Foster, R. C., Graber, H. C., Harr, P., Hormann, V., Lien, R.-C., Lin, I.-I., Sanford, T. B., Tang, T.-Y., & Wu, C.-C. (2014). Impact of Typhoons on the Ocean in the Pacific. Bulletin of the American Meteorological Society, 95(9), 1405–1418.
DeMaria, M., & Pickle, J. D. (1988). A Simplified System of Equations for Simulation of Tropical Cyclones.
Dickey, T., Frye, D., McNeil, J., Manov, D., Nelson, N., Sigurdson, D., Jannasch, H., Siegel, D., Michaels, T., & Johnson, R. (1998). Upper-Ocean Temperature Response to Hurricane Felix as Measured by the Bermuda Testbed Mooring. Monthly Weather Review, 126(5), 1195–1201.
Ding, W., Liang, C., Liao, G., Li, J., Lin, F., Jin, W., & Zhu, L. (2018). Propagation characteristics of near-inertial waves along the continental shelf in the wake of the 2008 Typhoon Hagupit in the northern South China Sea. Bulletin of Marine Science, 94(4), 1293–1311.
Doong, Dong-Jiing, Jen-Ping Peng, & Alexander V. Babanin. (2019). Field investigations of coastal sea surface temperature drop after typhoon passages. Earth System Science Data, 11(1), 323-340
Emanuel, K. A. (1988). The Maximum Intensity of Hurricanes. Journal of the Atmospheric Sciences, 45(7), 1143–1155.
Emanuel, K., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental Control of Tropical Cyclone Intensity. Journal of the Atmospheric Sciences, 61(7), 843–858.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. da, Gu, W., … Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454.
Glenn, S. M., Miles, T. N., Seroka, G. N., Xu, Y., Forney, R. K., Yu, F., Roarty, H., Schofield, O., & Kohut, J. (2016). Stratified coastal ocean interactions with tropical cyclones. Nature Communications, 7(1), 10887.
Glenn, S., Miles, T., Seroka, G., Forney, R., Roarty, H., Schofield, O., Kohut, J., Xu, Y., & Yu, F. (2016). Stratified coastal ocean processes in hurricanes and typhoons enhance ahead-of-eye cooling and reduce storm intensity. OCEANS 2016 - Shanghai, 1–6.
Gray, W. (1979). Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, 1979 - Aoml.Noaa.Gov, 155-218.
Hsueh, Y. (2000). The Kuroshio in the East China Sea. Journal of Marine Systems, 24(1), 131–139.
Ko, D. S., Chao, S.-Y., Wu, C.-C., Lin, I.-I., & Jan, S. (2016). Impacts of Tides and Typhoon Fanapi (2010) on Seas Around Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(2), 261–280.
Li, J., Li, G., Xu, J., Qiao, L., Ma, Y., Ding, D., & Liu, S. (2019). Responses of Yellow Sea Cold Water Mass to Typhoon Bolaven. Journal of Ocean University of China, 18(1), 31–42.
Lin, I., Liu, W. T., Wu, C.-C., Wong, G. T. F., Hu, C., Chen, Z., Liang, W.-D., Yang, Y., & Liu, K.-K. (2003b). New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophysical Research Letters, 30(13).
Lin, I.-I. (2012). Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. Journal of Geophysical Research: Oceans, 117(C3).
Lin, I.-I., Liu, W. T., Wu, C.-C., Chiang, J. C. H., & Sui, C.-H. (2003a). Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophysical Research Letters, 30(3).
Lin, I.-I., Wu, C.-C., Emanuel, K. A., Lee, I.-H., Wu, C.-R., & Pun, I.-F. (2005). The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy. Monthly Weather Review, 133(9), 2635–2649.
Marchesiello, P., McWilliams, J. C., & Shchepetkin, A. (2003). Equilibrium Structure and Dynamics of the California Current System. Journal of Physical Oceanography, 33(4), 753–783.
Mitchell, D. A., Teague, W. J., Jarosz, E., & Wang, D. W. (2005). Observed currents over the outer continental shelf during Hurricane Ivan. Geophysical Research Letters, 32(11).
NITANI, H. (1972). Beginning of the Kuroshio. Kuroshio, Physical Aspect of the Japan Current.
Pan, H., Lv, X., Wang, Y., Matte, P., Chen, H., & Jin, G. (2018). Exploration of Tidal-Fluvial Interaction in the Columbia River Estuary Using S_TIDE. Journal of Geophysical Research: Oceans, 123.
Perlin, A., Moum, J. N., & Klymak, J. M. (2005). Response of the bottom boundary layer over a sloping shelf to variations in alongshore wind. Journal of Geophysical Research: Oceans, 110(C10).
Perlin, A., Moum, J. N., Klymak, J. M., Levine, M. D., Boyd, T., & Kosro, P. M. (2007). Organization of stratification, turbulence, and veering in bottom Ekman layers. Journal of Geophysical Research: Oceans, 112(C5).
Price, J. F. (1981). Upper Ocean Response to a Hurricane. Journal of Physical Oceanography, 11(2), 153–175.
Sadhuram, Y. (2004). Record decrease of sea surface temperature following the passage of a super cyclone over the Bay of Bengal.
Shang, S., Li, L., Sun, F., Wu, J., Hu, C., Chen, D., Ning, X., Qiu, Y., Zhang, C., & Shang, S. (2008). Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001. Geophysical Research Letters, 35(10).
Shay, L. K., Black, P. G., Mariano, A. J., Hawkins, J. D., & Elsberry, R. L. (1992). Upper ocean response to Hurricane Gilbert. Journal of Geophysical Research: Oceans, 97(C12), 20227–20248.
Shchepetkin, A. F., & McWilliams, J. C. (2003). A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108(C3).
Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347–404.
Shen, D., Li, X., Pietrafesa, L., & Bao, S. (2017). Geostationary satellite observations and numerical simulation of typhoon-induced upwelling to the Northeast of Taiwan. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3552–3555.
Shiah, F.-K., Chung, S.-W., Kao, S.-J., Gong, G.-C., & Liu, K.-K. (2000). Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Continental Shelf Research, 20(15), 2029–2044.
Smith, W. H., & Sandwell, D. (1997). Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science, 277(5334), 1956.
Sterl, M. F., Delandmeter, P., & van Sebille, E. (2020). Influence of Barotropic Tidal Currents on Transport and Accumulation of Floating Microplastics in the Global Open Ocean. Journal of Geophysical Research. Oceans, 125(2), e2019JC015583.
Subrahmanyam, M. V. (2015). Impact of typhoon on the north-west Pacific sea surface temperature: A case study of Typhoon Kaemi (2006). Natural Hazards, 78(1), 569–582.
Teague, W. J., Jarosz, E., Wang, D. W., & Mitchell, D. A. (2007). Observed Oceanic Response over the Upper Continental Slope and Outer Shelf during Hurricane Ivan. Journal of Physical Oceanography, 37(9), 2181–2206.
Tomczak, M. (1996). Upwelling dynamics in deep and shallow water.
Tsai, Y., Chern, C.-S., & Wang, J. (2008). Typhoon induced upper ocean cooling off northeastern Taiwan. Geophysical Research Letters, 35(14).
Tseng, Y.-H., Jan, S., Dietrich, D., Lin, I.-I., Chang, Y.-T., & Tang, T.-Y. (2010). Modeled Oceanic Response and Sea Surface Cooling to Typhoon Kai-Tak. Terrestrial Atmospheric and Oceanic Sciences - TERR ATMOS OCEAN SCI, 21.
Wåhlin, A. K., Muench, R. D., Arneborg, L., Björk, G., Ha, H. K., Lee, S. H., & Alsén, H. (2012). Some Implications of Ekman Layer Dynamics for Cross-Shelf Exchange in the Amundsen Sea. Journal of Physical Oceanography, 42(9), 1461–1474.
Wang, B., Elsberry, R. L., Wang, Y., & Wu, L. (1998). Dynamics in tropical cyclone motion: A review. Chin. J. Atmos. Sci., 22, 416–434.
Wang, Y. (2020). Composite of Typhoon-Induced Sea Surface Temperature and Chlorophyll-a Responses in the South China Sea. Journal of Geophysical Research: Oceans, 125(10), e2020JC016243.
Webb, D. J., Holmes, R. M., Spence, P., & England, M. H. (2019). Barotropic Kelvin Wave-Induced Bottom Boundary Layer Warming Along the West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 124(3), 1595–1615.
Wentz, F. J., Gentemann, C., Smith, D., & Chelton, D. (2000). Satellite Measurements of Sea Surface Temperature Through Clouds. Science, 288(5467), 847–850.
Xiao, Z., Xiao, S., Hao, Y., & Zhang, D. (2007). Morphological features of ionospheric response to typhoon. Journal of Geophysical Research: Space Physics, 112(A4).
Yoshikawa, Y., Endoh, T., Matsuno, T., Wagawa, T., Tsutsumi, E., Yoshimura, H., & Morii, Y. (2010). Turbulent bottom Ekman boundary layer measured over a continental shelf. Geophysical Research Letters, 37(15).
Zhang, Z., Wang, Y., Zhang, W., & Xu, J. (2019). Coastal Ocean Response and Its Feedback to Typhoon Hato (2017) Over the South China Sea: A Numerical Study. Journal of Geophysical Research: Atmospheres, 124(24), 13731–13749.
Zheng, G. M., & Tang, D. (2007). Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Marine Ecology Progress Series, 333, 61–74.
Zheng, Z.-W., Ho, C.-R., & Kuo, N.-J. (2008). Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang. Geophysical Research Letters, 35(20).
Zheng, Z.-W., Ho, C.-R., Zheng, Q., Kuo, N.-J., & Lo, Y.-T. (2010a). Satellite observation and model simulation of upper ocean biophysical response to Super Typhoon Nakri. Continental Shelf Research, 30(13), 1450–1457.
Zheng, Z.-W., Ho, C.-R., Zheng, Q., Lo, Y.-T., Kuo, N.-J., & Gopalakrishnan, G. (2010b). Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific. Journal of Geophysical Research: Oceans, 115(C9).
Zheng, Z.-W., Zheng, Q., Gopalakrishnan, G., Kuo, Y.-C., & Yeh, T.-K. (2017). Response of upper ocean cooling off northeastern Taiwan to typhoon passages. Ocean Modelling, 115.
Zheng, Z.-W., Zheng, Q., Lee, C.-Y., & Gopalakrishnan, G. (2014). Transient modulation of Kuroshio upper layer flow by directly impinging typhoon Morakot in east of Taiwan in 2009. Journal of Geophysical Research: Oceans, 119(7), 4462–4473.
Zhuang W. (2008). 潮殘餘流與臺灣西海岸長期 沖淤潛勢之研究(1/2) -臺灣環島海域海洋數值模式之引進及建置-. 交通部運輸研究所.
Zhuang W., & Liau J.-M. (2009). 潮殘餘流與臺灣西海岸長期沖淤潛勢之研究(2/2)-臺灣環島海域潮殘餘流之數值模擬. 交通部運輸研究所.
李汴軍, 范揚洺, 董東璟, & 高家俊. (2005). 台灣海域潮汐空間均勻特性之研究 (Vol. 5). 海洋工程學刊.