簡易檢索 / 詳目顯示

研究生: 余禮儒
Yu, Li-Lu
論文名稱: 廣鹽性青鱂魚仔魚體表離子細胞排放鉀離子之機制
Potassium Secretion by Ionocytes in the Skin of Medaka Larvae
指導教授: 林豊益
Lin, Li-Yih
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 59
中文關鍵詞: 魚類離子調控離子細胞鉀離子青鱂魚
英文關鍵詞: fish, ion regulation, ionocyte, potassium, medaka
論文種類: 學術論文
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 魚類鰓與皮膚上的離子細胞是維持離子與滲透壓恆定的主要細胞。離子細胞參與鈉、氯、鈣離子的調節機制已經有許多研究,但是脊椎動物身體內重要的陽離子¬鉀離子的調節機制卻不甚明確。近期研究發現,斑馬魚離子細胞中有一群細胞的頂膜會表現鉀離子通道(ROMK),而底側膜有鈉鉀幫浦(NKA)。在吳郭魚(Mozambique tilapia)的研究也發現類似的細胞,並且推論這種細胞是參與鉀離子分泌的離子細胞。然而,這些研究仍然缺少直接的證據去證實鉀離子分泌細胞的功能。本研究使用廣鹽性青鱂魚(Oryzias latipes)作為模式物種,利用掃描式離子選擇電極技術(SIET)測量仔魚皮膚上離子細胞鉀離子流,證實有一群離子細胞會分泌鉀離子。高鉀淡水與海水環境的馴養後會促進鉀離子的分泌。而且鉀離子的分泌會受到ROMK與NKCC抑制劑的抑制。利用原位雜交與細胞免疫組織染色也發現ROMKa確實會表現在離子細胞中。定量PCR分析魚鰓上mRNA的變化,發現高鉀環境馴養能夠增加ROMKa與NKCC1a的表現量。本研究提供直接的證據支持離子細胞分泌鉀離子的生理功能,並提出ROMKa與NKCC1參與鉀分泌的機制。

    The ionocyte in gills and skin of fish plays a critical role in ionic and osmotic regulation. Molecular mechanisms of sodium, chloride and calcium regulation in the ionocytes have been well investigated. However, the regulatory mechanism of potassium, which is a major monovalent cation in fish, is still unclear. In recent studies, a sub-group of ionocyte, which expresses a renal outer medullar potassium channel (ROMK) in the apical membrane and Na+/K+-ATPase (NKA) in the basolateral membrane was identified in zebrafish and Mozambique tilapia, suggesting that those ionocytes are involved in potassium secretion. However, the potassium secreting function of ionocyte is not fully understood. In this study, we investigated the mechanism of potassium secretion by using medaka (Oryzias latipes) as an animal model. With a scanning ion-selective electrode technique (SIET), potassium secretion was detected at the apical surface of a group of ionocytes in the skin of medaka larvae. The potassium secretion was enhanced after high potassium water (HK) or seawater acclimation, and was inhibited by ROMK and Na+-K+-Cl- cotransporter (NKCC) inhibitors. In situ hybridization and immunohistochemistry showed that kcnj1a and NKCC1a were expressed in the skin ionocytes. Quantitative PCR showed that mRNA levels of kcnj1a and nkcc1a were induced by HK acclimation. Taken together, this study provides physiological and molecular evidence to show that ROMKa and NKCC1 are involved in the potassium secretion of ionocytes.

    摘要 5 Abstract 6 Introduction 7 The importance of potassium in vertebrate animals 7 Potassium regulation in terrestrial animals 7 Na+-K+-Cl- cotransporter in renal potassium reabsorption 8 Renal outer medullar potassium channel in renal potassium secretion 9 Potassium disorder 10 Ion-regulation in fish 10 Ionocytes in fish skin and gill 11 Renal outer medullar potassium channel (ROMK) in fish gills 12 Na+-K+-Cl- cotransporter in fish gills 13 Scanning ion-selective electrode technique (SIET) and animal model 13 Purposes and Hypotheses 15 Experimental Designs 16 Experiment 1. Whole-body K+ and Na+ contents in different stages of medaka larvae acclimated to KF, NW or HK 17 Experiment 2. K+ gradient at skin surface of medaka larvae 17 Experiment 3. K+ gradient at the yolk-sac surface in larvae acclimated to KF, NW and HK 17 Experiment 4. K+ fluxes at individual ionocytes and keratinocytes in the yolk-sac skin of larvae 17 Experiment 5. Effect of short time high ammonia on K+ and NH4+ fluxes in ionocytes and keratinocytes of larvae 18 Experiment 6. Effects of ROMK inhibitor (VU591) on K+ transport 18 Experiment 7. Effects of NKCC inhibitor (bumetanide) on K+ transport 18 Experiment 8. Quantitative real time-PCR analysis of gene expression in gills of medaka acclimated to NW or HK 18 Experiment 9. In situ hybridization of kcnj1a and immunohistochemistry of NKA in ionocytes of larvae 19 Materials and Methods 20 Experimental animals 20 Acclimation experiments 20 Measurement of whole-body K+ or Na+ contents in medaka larvae 21 Scanning ion-selective electrode technique (SIET) 21 Measurement of surface K+ gradients 22 Measurement of cellular K+ fluxes for specific cells 23 Treatments of VU591 and Bumetanide 24 Preparation of RNA 24 Quantitative real-time polymerase chain reaction (qRT-PCR) analysis 25 RNA probe synthesis 26 In situ hybridization and immunohistochemistry (IHC) 27 Statistical analysis 28 Results 29 Experiment 1. Whole-body K+ and Na+ contents in different stages of medaka larvae acclimated to KF, NW or HK 29 Experiment 2. K+ gradient at skin surface of medaka larvae 29 Experiment 3. K+ gradient at the yolk-sac surface in larvae acclimated to KF, NW and HK 30 Experiment 4. K+ fluxes at individual ionocytes and keratinocytes in the yolk-sac skin of larvae 30 Experiment 5. Effect of short time high ammonia on K+ and NH4+ fluxes in ionocytes and keratinocytes of larvae 30 Experiment 6. Effects of ROMK inhibitor (VU591) on K+ transport 31 Experiment 7. Effects of NKCC inhibitor (bumetanide) on K+ transport 31 Experiment 8. Quantitative real time-PCR analysis of gene expression in gills of medaka acclimated to NW or HK 32 Experiment 9. In situ hybridization of kcnjk1a and immunohistochemistry of NKA in ionocytes of larvae 32 Discussion 33 K+ content of larva 33 K+ secretion by larval skin 33 K+ secretion in larvae acclimated to different K+ levels 34 ROMK inhibitors 35 Effect of NH4+ on K+ secretion 36 Role of ROMK in fish ionocyte 36 ROMK in subtypes of ionocytes 37 NKCC role in medaka ionocyte 38 Conclusion 39 References 40 Figures 48 Fig. 1. Whole-body K+ (A) or Na+ (B) contents in different stages of medaka larvae acclimated to potassium-free water (KF), normal-fresh water (NW) or high-potassium water (HK). 48 Fig. 2. K+ gradient at skin surface of 7 dpf medaka larvae. 49 Fig. 3. K+ gradient at yolk-sac surface of 7 dpf medaka larvae acclimated to potassium-free water (KF), normal-fresh water (NW) or high-potassium water (HK). 50 Fig. 4. K+ flux at ionocytes (IC) or keratinocytes (KC) of 7 dpf medaka larvae acclimated to normal-fresh water (NW) or 15 ‰ and 30 ‰ salinity seawater (15 SW, 30 SW). 51 Fig. 5. Short time high ammonia effect of K+ (A) or NH4+ (B) fluxes at ionocytes (IC) or keratinocytes (KC) of 7 dpf medaka larvae acclimated to normal-fresh water (NW). 53 Fig. 6. Effects of ROMK inhibitor (VU591) on K+ gradient at the yolk-sac surface (A) or ionocytes (IC, B) and keratinocytes (KC, B) of 7 dpf medaka larvae acclimated to normal-fresh water (NW). 54 Fig. 7. Effects of NKCC inhibitor (bumetanide) on K+ gradient at the yolk-sac surface (A) or ionocytes (IC, B) and keratinocytes (KC, B) of 7 dpf medaka larvae acclimated to normal-fresh water (NW). 55 Fig. 8. Quantitative real-time PCR analysis of kcnj1a, 1b (A) and nkcc1a, 1b (B) relative mRNA expression in gills of medaka acclimated to normal-fresh water (NW) or high-potassium water (HK). 56 Fig. 9. in situ hybridization and immunohistochemistry of 7 dpf medaka larvae acclimated to normal-fresh water (NW). 57 Fig. 10. The putative model of K+ secretion by FW-type ionocytes of medaka. 59

    Abbas, L., Hajihashemi, S., Stead, L.F., Cooper, G.J., Ware, T.L., Munsey, T.S., Whitfield, T.T. & White, S.J. (2011) Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. The Journal of physiology, 589, 1489-1503.

    Bailey, M.A., Cantone, A., Yan, Q., MacGregor, G.G., Leng, Q., Amorim, J.B., Wang, T., Hebert, S.C., Giebisch, G. & Malnic, G. (2006) Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet. Kidney international, 70, 51-59.

    Bhave, G., Chauder, B.A., Liu, W., Dawson, E.S., Kadakia, R., Nguyen, T.T., Lewis, L.M., Meiler, J., Weaver, C.D., Satlin, L.M., Lindsley, C.W. & Denton, J.S. (2011) Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel. Molecular pharmacology, 79, 42-50.

    Choe, H., Zhou, H., Palmer, L.G. & Sackin, H. (1997) A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. The American journal of physiology, 273, F516-529.

    Delpire, E., Rauchman, M.I., Beier, D.R., Hebert, S.C. & Gullans, S.R. (1994) Molecular cloning and chromosome localization of a putative basolateral Na+-K+-2Cl- cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. The Journal of biological chemistry, 269, 25677-25683.

    Donini, A. & O'Donnell, M.J. (2005) Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. The Journal of experimental biology, 208, 603-610.

    Dymowska, A.K., Hwang, P.P. & Goss, G.G. (2012) Structure and function of ionocytes in the freshwater fish gill. Respiratory physiology & neurobiology, 184, 282-292.

    Evans, D.H., Piermarini, P.M. & Choe, K.P. (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85, 97-177.

    Fakler, B., Schultz, J.H., Yang, J., Schulte, U., Brandle, U., Zenner, H.P., Jan, L.Y. & Ruppersberg, J.P. (1996) Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. The EMBO journal, 15, 4093-4099.

    Frindt, G., Shah, A., Edvinsson, J. & Palmer, L.G. (2009) Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney. American journal of physiology. Renal physiology, 296, F347-354.

    Furukawa, F., Watanabe, S., Kakumura, K., Hiroi, J. & Kaneko, T. (2014) Gene expression and cellular localization of ROMKs in the gills and kidney of Mozambique tilapia acclimated to fresh water with high potassium concentration. American journal of physiology. Regulatory, integrative and comparative physiology, 307, R1303-1312.

    Furukawa, F., Watanabe, S., Kimura, S. & Kaneko, T. (2012) Potassium excretion through ROMK potassium channel expressed in gill mitochondrion-rich cells of Mozambique tilapia. American journal of physiology. Regulatory, integrative and comparative physiology, 302, R568-576.

    Gamba, G., Miyanoshita, A., Lombardi, M., Lytton, J., Lee, W.S., Hediger, M.A. & Hebert, S.C. (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. The Journal of biological chemistry, 269, 17713-17722.

    Geck, P., Pietrzyk, C., Burckhardt, B.C., Pfeiffer, B. & Heinz, E. (1980) Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. Biochimica et biophysica acta, 600, 432-447.

    Giebisch, G. (1998) Renal potassium transport: mechanisms and regulation. The American journal of physiology, 274, F817-833.

    Giebisch, G., Krapf, R. & Wagner, C. (2007) Renal and extrarenal regulation of potassium. Kidney international, 72, 397-410.

    Goldstein, L., Claiborne, J.B. & Evans, D.E. (1982) Ammonia excretion by the gills of two marine teleost fish: the importance of NH4+ permeance. The Journal of experimental zoology, 219, 395-397.

    Hebert, S.C., Desir, G., Giebisch, G. & Wang, W. (2005) Molecular diversity and regulation of renal potassium channels. Physiological reviews, 85, 319-371.

    Hiroi, J., McCormick, S.D., Ohtani-Kaneko, R. & Kaneko, T. (2005) Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. The Journal of experimental biology, 208, 2023-2036.

    Hirose, S., Kaneko, T., Naito, N. & Takei, Y. (2003) Molecular biology of major components of chloride cells. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 136, 593-620.

    Horng, J.L., Hwang, P.P., Shih, T.H., Wen, Z.H., Lin, C.S. & Lin, L.Y. (2009) Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. American journal of physiology. Cell physiology, 297, C845-854.

    Hsu, H.H., Lin, L.Y., Tseng, Y.C., Horng, J.L. & Hwang, P.P. (2014) A new model for fish ion regulation: identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). Cell and tissue research, 357, 225-243.

    Huang, C.L. (2007) Complex roles of PIP2 in the regulation of ion channels and transporters. American journal of physiology. Renal physiology, 293, F1761-1765.

    Hwang, P.P. & Chou, M.Y. (2013) Zebrafish as an animal model to study ion homeostasis. Pflugers Archiv : European journal of physiology, 465, 1233-1247.

    Hwang, P.P. & Lee, T.H. (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 148, 479-497.

    Hwang, P.P., Lee, T.H. & Lin, L.Y. (2011) Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. American journal of physiology. Regulatory, integrative and comparative physiology, 301, R28-47.

    Igarashi, P., Vanden Heuvel, G.B., Payne, J.A. & Forbush, B., 3rd (1995) Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na+-K+-2Cl- cotransporter. The American journal of physiology, 269, F405-418.

    Jin, W. & Lu, Z. (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry, 37, 13291-13299.

    Jin, W. & Lu, Z. (1999) Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry, 38, 14286-14293.

    Katoh, F., Cozzi, R.R., Marshall, W.S. & Goss, G.G. (2008) Distinct Na+/K+/2Cl- cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish. Cell and tissue research, 334, 265-281.

    Kubo, Y., Adelman, J.P., Clapham, D.E., Jan, L.Y., Karschin, A., Kurachi, Y., Lazdunski, M., Nichols, C.G., Seino, S. & Vandenberg, C.A. (2005) International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacological reviews, 57, 509-526.

    Lin, L.Y., Horng, J.L., Kunkel, J.G. & Hwang, P.P. (2006) Proton pump-rich cell secretes acid in skin of zebrafish larvae. American journal of physiology. Cell physiology, 290, C371-378.

    Liu, S.T., Tsung, L., Horng, J.L. & Lin, L.Y. (2013) Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. American journal of physiology. Regulatory, integrative and comparative physiology, 305, R242-251.

    Lothar, K., Martin, K., Arnold, K., Andreas, Z., Dorthe, K.Z., Bernd, R., Christian, W., Karl, G., Manuela, C.K., Hannsjorg, W.S., Rosa, V., Lionel, F., Genevieve, J., Michele, D., Gian, F.R., Patrick, N., Corinne, A., Delphine, F., Frederique, L., Emmanuel, C., France, L., Jean, L.A., Louis, D., Pascal, S., Georges, D., Friedhelm, H., Martin, V., Willem, P., Matthias, B., Lambertus, P.W.J., Henny, H.L., Willy, N., Leo, A.H.M., Nine, V.A.M.K., Lisa, M.G., Christopher, J.W., Gilbert, M. & Steven, C.H. (1997) Mutations in the gene encoding the inwardly-rectifying renal potassium channel, ROMK, cause the antenatal variant of Bartter syndrome: evidence for genetic heterogeneity. International Collaborative Study Group for Bartter-like Syndromes.

    Lu, M., Leng, Q., Egan, M.E., Caplan, M.J., Boulpaep, E.L., Giebisch, G.H. & Hebert, S.C. (2006) CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. The Journal of clinical investigation, 116, 797-807.

    Marshall, W.S. (2011) Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta physiologica (Oxford, England), 202, 487-499.

    Marshall, W.S. & Bryson, S.E. (1998) Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 119, 97-106.

    Marshall, W.S., Lynch, E.M. & Cozzi, R.R. (2002) Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. The Journal of experimental biology, 205, 1265-1273.

    McNicholas, C.M., MacGregor, G.G., Islas, L.D., Yang, Y., Hebert, S.C. & Giebisch, G. (1998) pH-dependent modulation of the cloned renal K+ channel, ROMK. The American journal of physiology, 275, F972-981.

    McNicholas, C.M., Wang, W., Ho, K., Hebert, S.C. & Giebisch, G. (1994) Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proceedings of the National Academy of Sciences of the United States of America, 91, 8077-8081.

    Morgan, T., Tadokoro, M., Martin, D. & Berliner, R.W. (1970) Effect of furosemide on Na+ and K+ transport studied by microperfusion of the rat nephron. The American journal of physiology, 218, 292-297.

    Payne, J.A. & Forbush, B., 3rd (1994) Alternatively spliced isoforms of the putative renal Na+-K+-2Cl- cotransporter are differentially distributed within the rabbit kidney. Proceedings of the National Academy of Sciences of the United States of America, 91, 4544-4548.

    Payne, J.A., Xu, J.C., Haas, M., Lytle, C.Y., Ward, D. & Forbush, B., 3rd (1995) Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na+-K+-2Cl- cotransporter in human colon. The Journal of biological chemistry, 270, 17977-17985.

    Rengarajan, S., Lee, D.H., Oh, Y.T., Delpire, E., Youn, J.H. & McDonough, A.A. (2014) Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. American journal of physiology. Renal physiology, 306, F1059-1068.

    Segal, Y. & Reuss, L. (1990) Ba2+, TEA+, and quinine effects on apical membrane K+ conductance and maxi K+ channels in gallbladder epithelium. The American journal of physiology, 259, C56-68.

    Shen, W.P., Horng, J.L. & Lin, L.Y. (2011) Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. American journal of physiology. Regulatory, integrative and comparative physiology, 300, R858-868.

    Shih, T.H., Horng, J.L., Hwang, P.P. & Lin, L.Y. (2008) Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. American journal of physiology. Cell physiology, 295, C1625-1632.

    Shih, T.H., Horng, J.L., Lai, Y.T. & Lin, L.Y. (2013) Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. American journal of physiology. Regulatory, integrative and comparative physiology, 304, R1130-1138.

    Shih, T.H., Horng, J.L., Liu, S.T., Hwang, P.P. & Lin, L.Y. (2012) Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. American journal of physiology. Regulatory, integrative and comparative physiology, 302, R84-93.

    Silva, P., Solomon, R., Spokes, K. & Epstein, F. (1977) Ouabain inhibition of gill Na+-K+-ATPase: relationship to active chloride transport. The Journal of experimental zoology, 199, 419-426.

    Simon, D.B., Karet, F.E., Hamdan, J.M., DiPietro, A., Sanjad, S.A. & Lifton, R.P. (1996a) Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na+-K+-2Cl- cotransporter NKCC2. Nature genetics, 13, 183-188.

    Simon, D.B., Karet, F.E., Rodriguez-Soriano, J., Hamdan, J.H., DiPietro, A., Trachtman, H., Sanjad, S.A. & Lifton, R.P. (1996b) Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nature genetics, 14, 152-156.

    Smith, P.J., Hammar, K., Porterfield, D.M., Sanger, R.H. & Trimarchi, J.R. (1999) Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy research and technique, 46, 398-417.

    Stevens, M.S. & Dunlay, R.W. (2000) Hyperkalemia in hospitalized patients. International urology and nephrology, 32, 177-180.

    Tang, C.H., Hwang, L.Y., Shen, I.D., Chiu, Y.H. & Lee, T.H. (2011) Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses. Fish physiology and biochemistry, 37, 709-724.

    Thier, S.O. (1986) Potassium physiology. The American journal of medicine, 80, 3-7.

    Wang, W.H. & Giebisch, G. (2009) Regulation of potassium (K) handling in the renal collecting duct. Pflugers Archiv : European journal of physiology, 458, 157-168.

    Welling, P.A. & Ho, K. (2009) A comprehensive guide to the ROMK potassium channel: form and function in health and disease. American journal of physiology. Renal physiology, 297, F849-863.

    Wu, S.C., Horng, J.L., Liu, S.T., Hwang, P.P., Wen, Z.H., Lin, C.S. & Lin, L.Y. (2010) Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. American journal of physiology. Cell physiology, 298, C237-250.

    Xu, Z.C., Yang, Y. & Hebert, S.C. (1996) Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. The Journal of biological chemistry, 271, 9313-9319.

    Yang, L., Frindt, G. & Palmer, L.G. (2010) Magnesium modulates ROMK channel-mediated potassium secretion. Journal of the American Society of Nephrology : JASN, 21, 2109-2116.

    無法下載圖示 本全文未授權公開
    QR CODE