簡易檢索 / 詳目顯示

研究生: 周承穎
CHOU CHENG YING
論文名稱: 開發可撓性導電薄膜於光電元件之研究
Development of flexible conductive thin films for optoelectronic device applications
指導教授: 張天立
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 奈米碳管掀離法電泳鍍光電元件
英文關鍵詞: CNT, Lift-off, Electrophoresis plating, Photoelectric sensor
論文種類: 學術論文
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為利用奈米碳管在軟性基板聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)上製作導電電極,分別利用掀離法(Lift-off)和電泳鍍法(Electrophoresis plating)將奈米碳管在軟性基板上圖案化,並於光電元件之應用。本研究利用奈米碳管粉末,配合十二烷基硫酸鈉(Sodium dodecyl sulfate, SDS)作其分散劑以找尋最佳之導電和製作濃度,再分別利用掀離法和電泳鍍法探討其最佳之製程參數。在掀離法方面,先利用大氣電漿將PDMS表面親水化,再利用黃光微影直接在表面進行圖案化,最後利用浸泡的方式將奈米碳管沉積在PDMS表面,利用不同的浸泡方式和熱烤時間得到最佳之奈米碳管圖案化。另外,在電泳鍍方面,設定不同的電壓和時間來取得最佳之沉積結果,最後再將其轉印到PDMS基板上。試片完成後,利用四點探針和資料蒐集器測量試片的導電率,並利用掃描式電子顯微鏡(Scanning electron microscope, SEM)對奈米碳管的表面進行量測以檢測其經過攪拌後是否有產生團聚等現象,而紅外光譜(Fourier transform infrared spectroscopy, FTIR)和拉曼光譜(Raman spectrum)主要為對奈米碳管溶液進行分析,以測得溶液在經過分散劑後其奈米碳管是否改變。導電薄膜的製作完成後,將為先利用簡單的方式以檢測其導電能力,最後將導電薄膜應用於觸控和壓力微感測器。

    The aim of this study is to use a simple process with a lift-off and electrophoresis plating technique to fabricate the conductive thin film on flexible substrate with CNTs (Carbon nanotubes). The CNTs are studied as the electrode material and have the potential owing to its high conductivity and the convenience of the fabricating process. To deploy the CNTs, we apply SDS (Sodium dodecyl sulfate) as the dispersant. Here, the substrate is employed PDMS (Polydimethylsiloxane), which is a group of polymeric organosilicon compounds. For the direct photolithography on PDMS, the surface of PDMS should be not only hydrophilic, but more flat so that the photoresist could be spun on the surface evenly. After the process of photolithography, the patterns of electrode can be defined on the surface. Based on this direct process, the complicated electrode patterns can be easily defined and its pattern would not be deformed. In electrophoretic plating technique, by applying different voltages and time for abtained optimized parameters, it can be deposited CNTs on PDMS well. After depositing, the CNTs can be transferred to PDMS. Finally, we use SEM, FTIR, and Raman Spectrum for measuring the surface and properties of CNT. Therefore, this study provides a novel and simple way to fabricate the conductive thin films and through the complicated electrode pattern defined, the application of thin films for photoelectric sensors could be easily used in this work.

    中文摘要 i 英文摘要 ii 致謝 iii 總目錄 iv 圖目錄 vii 表目錄 xvii 第一章 緒論 1 1.1 前言 1 1.2 感測器基礎理論 3 1.2.1 感測器之材料的基本結構和特性 5 1.2.2 感測器之力學理論 8 1.2.3 電容式感測理論 11 1.2.3.1 電容式感測原理 11 1.2.3.2 電容量測原理 13 1.2.4 介電質對感測器之影響 14 1.2.5 電容式觸控感測原理 17 1.2.6 電容式壓力感測器原理與應用 20 1.3 研究動機與目的 22 第二章 文獻回顧 23 2.1 軟性導電材料 23 2.1.1 奈米碳管 23 2.1.2 奈米銀線 24 2.1.3 G-PEDOT/PEDOT/Graphene 25 2.2 導電墨水圖案化 34 2.2.1 雷射法 34 2.2.2 掀離法 35 2.2.3 壓印法 36 2.2.4 介電泳法 36 2.3 電泳鍍 49 2.4 導電薄膜之應用 52 2.5 大氣電漿處理PDMS表面之親水化 60 第三章 實驗規劃 67 3.1 實驗目的 67 3.2 實驗方法 69 3.2.1 導電電極材料配製 69 3.2.2 軟性基板PDMS之製作 70 3.2.3 PDMS親水處理 71 3.2.4 感測器電極設計 72 3.2.5 感測器導電薄膜之製作 73 3.2.5.1 Lift-off法 74 3.2.5.2 電泳鍍沉積法 79 3.2.6 感測器介電層之製作與導電電極上下接合 81 3.2.7 導電薄膜之電性實際量測 83 3.2.8 試片量測 84 第四章 實驗結果與討論 88 4.1 奈米碳管調配 88 4.2 電極製作 89 4.2.1 Lift-off法 89 4.2.2 電泳鍍沉積法 93 4.3 試片量測結果 101 第五章 結果與未來展望 111 5.1 結論 111 5.5 未來展望 112 參考文獻 114

    1. 陳弘仁,”微機電系統的市場發展現況及未來趨勢”,奈米通訊,第17卷,第13期,工研院南分院微系統中心,pp. 23-33。
    2. P. M. Ajayan and S. Lijima, “Smallest carbon nanotubes,” Nature, Vol. 358 (1992)
    3. 黃淑娟、郭信良、劉易昌、葉裕洲,”新碳材時代—從奈米碳管到石墨烯”,工業材料,第291期,pp. 93-115,2011。
    4. K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee and D. R. Cairns, “Durable transparent carbon nanotubes films for flexible device components,” Thin Solid Films, Vol. 518 (2010) pp. 6977-6983
    5. A. Elschner and W. Lövenich, “Solution-deposited PEDOT for transparent conductive applications,” MRS Bulletin, Vol. 36 (2011) pp. 794-798
    6. F. Alvi, M. K. Ram, P. A. Basnayaka, E. Stefanakos, Y. Goswami and A. Kumar, “Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor,” Electrochimica Acta, Vol. 56 (2011) pp. 9406-9412
    7. Supplementary material (ESI) for lab on a chip
    8. R. C. Huang and L. Anand, “Non-linear mechanical behavior of the elastomer polydimethylsiloxane (PDMS) used in the manufacture of microfluidic devices”
    9. H. K. Kim, S. Lee and K. S. Yun, “Capacitive tactile sensor array for touch screen application,” Sensors and Actuators A: Physical, Vol. 165 (2011) pp. 2-7
    10. “觸控原理”,坤巨資訊股份有限公司,http://www.gtouch.com.tw/tc/tech_principle.html
    11. A. Page,“創新手機操作介面設計 電容式感測技術備受關注”,新電子,第259期,2007。
    12. H. K. Lee, J. Chung. S. I. Chang and E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of Microelectromechanical Systems, Vol. 17 (2008) pp.934-942
    13. B. Nie, S. Xing, J. D. Brandt and T. Pan, “Droplet-based interfacial capacitive sensing,” Lab on a Chip, Vol. 12 (2012) pp. 1110-1118
    14. R. D. P. Wong, J. D. Posner and V. J. Santos, “Flexible microfluidic normal force sensor skin for tactile feedback,” Sensors and Actuators A: Physical, Vol. 179 (2012) pp. 62-69
    15. Y. L. Park, B. R. Chen and R. J. Wood, “Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors,” IEEE Sensors Journal, Vol. 12 (2012) pp. 2711-2718
    16. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Letters, Vol. 3 (2003) pp. 269-273
    17. E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth and G. Gruner, “Transparent and flexible carbon nanotubes transistors,” Nano Letters, Vol. 5 (2005) pp.757-760
    18. S. L. Hellstrom, H. W. Lee and Z. Bao, “Polymer-assisted direct deposition of uniform carbon nanotubes bundle networks for high performance transparent electrodes,” American Chemical Society Nano, Vol.3 (2009) pp.1423-1430
    19. C. Feng, K. Liu, J. S. Wu, L. Liu, J. S. Cheng, Y. Zhang, Y. Sun, Q. Li, S. Fan, and K. Jiang, “Flexible, Stretchable, Transparent Conducting Films Made From Superaligned Carbon Nanotubes,” Advanced Functional Materials, Vol. 20, pp. 885-891 (2010)
    20. D. S. Hecht, A. M. Heintz, R. Lee, L. Hu, B. Moore, C. Cucksey and S. Risser, “High conductivity transparent carbon nanotubes films deposited from superacid,” Nanotechnology, Vol. 22 (2011) 075201 (5pp)
    21. Z. Shi, X. Chen, X. Wang, T. Zhang and J. Jin, “Fabrication of superstrong ultrathin free-standing single-walled carbon nanotubes films via a wet process,” Advanced Functional Materials, Vol. 21 (2011) pp.4358-4363
    22. H. H. Lee, K. S. Chou and K. C. Huang,”Inkjet printing of nanosized silver colloids,” Nanotechnology, Vol. 16 (2005) pp. 2436-2441
    23. A.R. Madaria, A. Kumar and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnoogy, Vol. 22 (2011) 245201 (7pp)
    24. C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, Vol. 321 (2008) pp. 385-388
    25. N. D. Sankir, “Selective deposition of PEDOT/PSS on to flexible substrates and tailoring the electrical resistivity by post treatment,” Circuit World, Vol. 34 (2008) pp. 32-37
    26. Y. Xu, Y. Wang, J. Liang, Y. Huang, Y. Ma, X. Wan and Y. Chen, “A hybrid material of graphene and poly(3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency,” Nano Research, Vol. 2 (2009) pp. 343-348
    27. D. S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. Park, G. Irvin, P. Drzaic, “Carbon-nanotube film on plastic as transparent electrode for resistive touch screens,” Journal of the SID, Vol. 17, pp. 941-946 (2009)
    28. S. Kuo, C. Jian, J. R. Ho and J. W. John Cheng, “Fabrication of transparent double-walled carbon nanotubes flexible matrix touch panel by laser ablation technique,” Optics & Laser Technology, Vol. 43, pp. 1371-1376 (2011)
    29. Y. Chai, J. Gong, K. Zhang, P. C. H. Chan and M. M. F. Yuen, “Flexible transfer of aligned carbon nanotube films for integration at lower temperature,” Nanotechnology, Vol. 18 (2007) 355709 (5pp)
    30. L. Zhu, J. Xu, Y. Xiu, Y. Sun, D. W. Hess and C. P. Wong, “Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays,” Carbon, Vol. 44 (2006) pp. 253-258
    31. X. Xiong, C. L. Chen, P. Ryan, A. A. Busnaina, Y. J. Jung and M. R. Dokmeci, “Directed assembly of high density single-walled carbon nanotubes patterns on flexible polymer substrates,” Nanotechnology, Vol. 20 (2009) 295302 (6pp)
    32. T. H. Tran, K. S. Lee, J. W. Lee and B. K. Ju, “Selective placement of single-walled carbon nanotubes on pre-defined micro-patterns on SiO2 surface based on a dry lift-off technique,” Current Applied Physics, Vol. 9 (2009) pp. 38-42
    33. E. U. Kim, K. J. Baeg, Y. Y. Noh, D. U. Kim, T. Lee, I. Park and G. Y. Jung, “Templated assembly of metal nanoparticles in nanoimprinted patterns for metal nanowire fabrication,” Nanotechology, Vol. 20 (2009) 355302 (6pp)
    34. J. H. Choi, S. W. Lee, K. D. Kim, D. G. Choi, J. H. Jeong and E. S. Lee, “Nanosilver particles-based conductive patterns developed by direct soft imprint lithography,” Current Applied Physics, Vol. 9 (2009) pp.138-140
    35. L. Jiang, S. Islam and N. S. Korivi, “Micro-patterning of nanocomposites of polymer and carbon nanotubes,” Microelectronic Engineering, Vol. 93 (2012) pp. 10-14
    36. H. W. Seo, C. S. Han, D. G. Choi, K. S. Kim and Y. H. Lee, “Controlled assembly of single SWNTs bundle using dielectrophoresis,” Microelectronic Engineering, Vol. 81 (2005) pp. 83-89
    37. Y. M. Chen, Y. T. Lai and Y. J. Yang, “Polymer-based carbon-nanotube film with reversible signal tracking capabilities,” Materials Letters, Vol. 65 (2011) pp. 3533-3536
    38. Y. T. Laim Y. M. Chen and Y. J. Joseph Yang, “A novel CNT-PDMS-based tactile sensing array with resistivity retaining and recovering by using dielectrophoresis effect,” Journal of Microelectromechanical Systems, Vol. 12 (2012) pp.217-223
    39. B. J. C. Thomas and A. R. Boccaccini, “Multi-walled carbon nanotubes coatings using electrophoretic deposition (EPD),” Journal of the American Ceramic Society, Vol. 88 (2005) pp. 980-982
    40. A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E.J. Minay and M. S. P. Shaffer, “Electrophoretic deposition of carbon nanotubes,” Carbon, Vol. 44 (2006) pp. 3149-3160
    41. S. M. Jung, H. Y. Jung and J. S. Suh, “Horizontally aligned carbon nanotubes field emitters fabricated on ITO glass substrates,” Carbon, Vol. 46 (2008) pp. 1973-1977
    42. I. Mazurenko, M. Etienne, O. Tananaiko, V. Zaitsev and A. Walcarius, “Electrophoretically deposited carbon nanotubes as a novel support for electrogenerated silica-dehydrogenase bioelectrodes,” Electrochimica Acta, Vol. 83 (2012) pp.359-366
    43. G.Gruner, “Carbon nanotubes films for transparent and plastic electronics,” Journal of Materials Chemistry, Vol. 16 (2006) pp. 3533-3539
    44. R. Mateiu, M. Lillemose, T. S. Hansen, A. Boisen and O. Geschke, “Reliability of poly 3,4-ethylenedioxythiophene strain gauge,” Microelectronic Engineering, Vol. 84 (2007) pp. 1270-1273
    45. S. Takamatsu, T. Takahata, M. Muraki, E. Iwase, K. Mastumoto and I. Shimoyama, “Transparent conductive-polymer strain sensors for touch input sheets of flexible displays,” J Micromech. Microeng., Vol. 20 (2010) 075017 (6pp)
    46. E. S. Choi, M. H. Jeong, K. W. Choi, C. Lim and S. B. Lee, “Flexible and transparent touch sensor using single-wall carbon nanotubes thin-films,”
    47. W. J. Xu, M. Kranz, S. H. Kim and M. G. Allen, “Micropatternable elastic electrets based on a PDMS/carbon nanotubes composite,” Journal of Micromechanical and Microengineering, Vol. 20 (2010) 104003 (7pp)
    48. J. Ge, G. Cheng and L. Chen, “Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotubes composite thin films,” Nanoscale, Vol. 3 (2011) pp. 3084-3088
    49. K. S. Karimov, F. A. Khalid and M. T. S. Chani, “Carbon nanotubes based strain sensors,” Measurement, Vol. 45 (2012) pp. 918-921
    50. 張育誠、吳國光、焦鴻文,"疏水性材料",環保新知,pp. 35-37,2011。
    51. 徐逸明、游閔盛、郭有斌、黃傑、洪昭南,"常壓電漿原理、技術與應用",化工技術,第197期,pp. 68-85,2009。
    52. H. T. Kim and O. C. Jeong, “PDMS surface modification using atmospheric pressure plasma,” Microelectronic Engineering, Vol. 88 (2011) pp. 2281-2285
    53. D. Lee and S. Yang, “Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity,” Sensors and Actuators B: Chemical, Vol. 162 (2012) pp. 425-434
    54. K. Kim, G. Kim, Y. Oh, T. G. Park, D. C. Han and S. S. Yang, “Simple atmospheric-pressure nonthermal plasma-jet system for poly(dimethylsiloxane) bonding process,” Japanese Journal of Applied Physics, Vol.51 (2012) 06FL15
    55. S. Hemmilä, J V. C. Rodríguez, J. Kreutzer and P. Kallio, “Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces,” Applied Surface Science, Vol. 258 (2012) pp. 9864-9875
    56. J. Li, X. Wang, C. Cheng, L. Wang, E. Zhao, X. Wang and W. Wen, “Selective modification for polydimethylsiloxane chip by micro-plasma,” Journal of Material Science, Vol. 48 (2013) pp.1310-1314
    57. 侯紹欽,“毛細管電泳晶片樣本預濃縮前處理技術之研究”,國立成功大學工程科學研究所碩士論文,2011。
    58. H. K. Lee, S. I. Chang and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” Journal of Microelectromechanical Systems, Vol. 6 (2006) pp. 1681-1686
    59. H. K. Lee, J. Chung, S. I Chang and E. Yoon, “Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor,” Journal of Micromechanical and Microengineering, Vo. 21 (2011) 034010 (9pp)
    60. Microposit S1800 series photo resist
    61. O. Omer, V. der Biest and L. J. Vandeperre, “Electrophoretic deposition of materials,” Annual Review of Materials Science, Vol. 29 (1999) pp. 327-325
    62. Q. Chen, Y. Sun, Y. Wang, H. Cheng and Q. M. Wang, “ZnO nanowires-polyimide nanocomposite piezoresistive strain sensor,” Sensors and Actuators A: Physical, Vol. 190 (2013) pp. 161-167

    無法下載圖示 本全文未授權公開
    QR CODE