研究生: |
余承遠 Cheng Yuan Yu |
---|---|
論文名稱: |
xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3微波陶瓷材料之拉曼光譜與延伸x光吸收精細結構分析 EXAFS and Raman Characterization of xLa(Mg1/2Sn1/2)O3 - (1-x)La(Mg1/2Ti1/2)O3 Microwave Ceramics |
指導教授: |
賈至達
Chia, Chih-Ta |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 鑭鎂鈦 、鑭鎂錫 、一比一結構 、鈣鈦礦 、陶瓷 、拉曼 |
英文關鍵詞: | LMT, LMS, 1:1 structure, perovskite, ceramic, Raman |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用拉曼散射、X光繞射和延伸X光精細結構吸收譜等光學方法來測量1:1結構A(B’1/2B”1/2)O3陶瓷家族中x La(Mg1/2Sn1/2)O3-(1-x) La(Mg1/2Ti1/2)O3鈣鈦礦陶瓷中氧八面體結構與其微波性質的關連性。這系列樣品共有五個,x代表錫原子的濃度,從0、0.25、0.5、0.75到1。在不同濃度的錫原子摻雜,Q×f值跟隨改變,隨著錫原子濃度的上升,介電係數下降。從X光吸收譜可以很明確知道錫原子是取代鈦原子的晶格位置,由於錫原子離子半徑較鈦原子大,所以當錫原子掺雜濃度越多時,錫與氧的鍵長增加,驗證氧八面體體積隨著錫原子濃度上升而增加,而在A位置的鑭原子與氧原子的鍵長隨著錫濃度之增加而減少,也就是鑭與氧形成的LaO8體積減少。從拉曼實驗顯示高頻部份與A1g(O)振動類似的振動模有聲子頻率紅移的現象,這也證明了錫與氧的鍵長增加,氧八面體體積增加,但是摻雜的錫原子較重使得氧八面體內部密度變大,造成介電常數減少。另一方面,部分鑭跟氧振動有聲子頻率藍移的現象,是與鑭原子形成之氧LaO8體積變小有關。Q×f值與聲子半寬度成反比,並且在錫原子與鈦原子掺雜比例相同為1:1時為最低,波的傳遞最差。從拉曼實驗及X光吸收譜實驗都顯示本文材料的微波特性與氧八面體微觀結構直接相關。
The 1:1 ordered xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3 microwave ceramics with x = 0, 0.25, 0.5, 0.75 and 1 were examined by Raman scattering and Extended X ray Absorption Fine Structure(EXAFS) to reveal the correlation of the micro-structure with the microwave dielectric properties. The microwave Qxf value increases with x, i.e. the concentration of the La(Mg1/2Sn1/2)O3, while the dielectric constant decreases with Sn concentration. EXAFS found that the Sn atoms are sitting at Ti lattice site, and the Sn-O bond length increases with Sn concentration. This is mainly due to the larger ionic radius and heavy mass of Sn4+, as compared with Ti4+ ions. Therefore, the volume of oxygen-octahedron increasing with Sn concentration, as predicted by the x-ray diffraction, is expected. However, the La-O bond length decreases with Sn concentration, that is the volume of LaO8 decreases, as revealed by EXAFS. Raman measurement found that the oxygen-octahedral vibrations mostly are redshifted by Sn doping, and the vibrations regarding to the La-site vibration are mostly blueshifted with Sn concentration. Raman measurement is consistent with the EXAFS results. EXAFS indicates the volume of oxygen-octahedron is increased with x, however, the density of oxygen-octahedron is also increased with x due to the heavy mass of Sn4+. Therefore, it is the main reason that causes the dielectric constant to reduce with x. The width of oxygen-octahedral phonon is strongly correlated with the microwave Qxf value, which indicates the propagation of the microwave is similar to the propagation of oxygen-octahedral phonon.
Chapter 1
[1] R. D. Richtmyer, “Dielectric Resonators”, J. Appl. Phys, (1939), 10, 391.
[2] Hiroshi Tamura, “Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure”, Jpn. J. Appl. Phys, (1986), 25,787.
[3] I. G. Siny, R. S. Katiyar, “Cation arrangement in the complex perovskites and vibration spectra”, J. Raman spectroscopy, (1998), 29, 385.
[4] G. Lucazeau, L. Avello, “Raman spectroscopy in solid state physics and materical sciene”, Theory Techniques and applications, (1995), 23, 301.
[5] E. Nyfors, “Cylindrical microwave resonator Sensors for measuring materials under flow”, PhD. thesis, Department of Electrical and Communications Engineering, Helsinki University of Technology, Finland, (2000).
[6] ICSD for www http://chem5.nchc.org.tw/icsd0702/index.php
[7] D. Y. Lee, “Crystal structure and microwave dielectric properties of La(Mg1/2Ti1/2)O3 ceramics”, J. Mater. Sci. Lett, (2000), 19, 131.
[8] R. Loudon, “The Raman effect in crystals”, Adv. Physics, (2001), 50, 813.
[9] G. Santosh Babu, V. Subramanian, “Structure determination and microwave dielectric properties of
La(MgSn)0.5O3 ceramics”, J. Europ. Ceram. Soc, (2007), 27, 2973.
[10] I. Levin, Terrell A. Vanderah, Tammy G. Amos, and James E. Maslar“Structural Behavior and Raman Spectra of Perovskite-Like Solid Solutions (1-x)La(Mg0.5Ti0.5)O3-xLa2/3TiO3”, Chem. Mater, (2005), 17, 3273.
[11] D. C. Koningsberger, R. Prins, “X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES”, A Wiley-Interscience Publication.
[12] Lipkin, J. Harry, “Phase uncertainty and loss of interference in a simple model for mesoscopic Aharonov-Bohm experiments”, Phys. Rev. A, (1990), 42, 49.
[13] Stern, A. Edward, “Theory of the Extended X-ray-Absorption Fine Structure”, Phys. Rev. B, (1974), 10, 3027.
[14] M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern and Y. Yacoby, “Analysis of multiple-scattering XAFS data using theoretical standards”, Physica B, (1995), 208, 154.
[15] B. Ravel, “Practical introduction to multiple scattering theory”, J. Alloys and Compounds, (2005), 401, 118.
[16] H. Wende, “Recent advances in x-ray absorption spectroscopy”, Rep. Prog. Phys, (2004), 67, 2105.
[17] http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/raman.html#c1
[18] http://www.kosi.com/raman/resources/tutorial/
[19] Shelly Kelly, “Basics of EXAFS data analysis”, Argonne National Laboratory, Argonne, IL.
Chapter 2
[1] I. Levin, T. A. Vanderah, T. G. Amos, and J. E. Maslar, “Structural Behavior and Raman Spectra of Perovskite-Like Solid Solutions (1-x)LaMg0.5Ti0.5O3-xLa2/3TiO3”, Chem. Master, (2005), 17, 3273.
[2] D. Y. Lee, “Crystal structure and microwave dielectric properties of
La(Mg1/2Ti1/2)O3 ceramics”, J. Mater. Sci. Lett, (2000), 19, 131.
[3] G. Santosh Babu, V. Subramanian, “Structure determination and microwave dielectric properties of La(MgSn)0.5O3 ceramics”, J. Europ. Ceram. Soc, (2007), 27, 2973.
[4] M. Avdeev, M. P. Seabra, and V. M. Ferreira, “Crystal structure of dielectric ceramics in the La(Mg0.5Ti0.5)O3–BaTiO3 system”, J. Mater. Res, (2002), 17, 5.
[5] H. Zheng, I. M. Reaney, and G. D. C. Csete de Gyorgyfalva, “Raman spectroscopy of CaTiO3-based perovskite solid solutions”, J. Mater. Res, (2004), 19, 2.
[6] I. Levin, T. A. Vanderah, T. G. Amos, and J. E. Maslar, “Structural Behavior and Raman Spectra of Perovskite-Like Solid Solutions (1-x)LaMg0.5Ti0.5O3-xLa2/3TiO3”, Chem. Mater, (2005), 17, 3273.
[7] N. W. Grimes, and R. W. Grimes, “Analysis of oxide dielectric data and the quantum theory of atomic polarizability”, J. Phys. Condens. Matter, (1997), 9, 6737.
[8] N. W. Grimes, and R. W. Grimes, “Dielectric polarizability of ions and the corresponding effective number of electrons”, J. Phys. Condens. Matter, (1998), 10, 3029.
[9] R. D. Shannon, “Dielectric polarizabilities of ions in oxides and fluorides”, J. Appl. Phys, (1993), 73, 1.
[10] B. Ravel and J. J. Rehr, “FEFF8.20”, University of Washington, (2000).
[11] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, “Multiple-scattering Calculation of X-ray absorption Spectra”, Phys. Rev. B, (1995), 52, 2995.
[12] ICSD for WWW http://chem5.nchc.org.tw/icsd0702/index.php
Chapter 3
[1] I. G. Siny, R.S. Katiyar, and A.S. Bhalla, “Cation Arrangement in the Complex Perovskites and Vibrational Spectra”, J. Raman Spectroscopy, (1998), 29, 385.
[2] I. Levin, J. Y. Chan, R. G. Geyer, J. E. Maslar, and T. A. Vanderah, “Cation Ordering Types and Dielectric Properties in the Complex Perovskite Ca(Ca1/3Nb2/3)O3”, J. Solid State Chem, (2001), 156, 122.
[3] A. Dias, L. A. Khalam, M. T. Sebastian, C. W. A. Paschoal, and R. L. Moreira, “Chemical Substitution in Ba(RE1/2Nb1/2)O3 (RE= La, Nd, Sm, Gd,Tb, and Y) Microwave Ceramics and Its Influence on the Crystal Structure and Phonon Modes”, Chem. Mater, (2006), 18, 214.
[4] E. Cockaynea, “Comparative dielectric response in CaTiO3 and CaAl1/2Nb1/2O3
from first principles”, J. Appl. Phys, 90, 3.
[5] D. Y. Lee, S. J. Yoon, J. H. Yeo, S. Nahm, J. H. Paik, K. C. Whang, B. G. Ahn, “Crystal structure and microwave dielectric properties of La(Mg1/2Ti1/2)O3 ceramics”, J. Mater. Sci. Lett, (2000), 19, 131.
[6] M. Avdeev, M. P. Seabra, and V. M. Ferreira, “Crystal structure of dielectric ceramics in the La(Mg0.5Ti0.5)O3–BaTiO3 system”, J. Mater. Res, (2002), 17, 5.
[7] R. R. Vedantam, V. Subramanian, V. Sivasubramanian and V. R. KMurthy , “Dielectric and Raman studies of (BaxPb1-x)(Yb0.5Nb0.5)O3“, J. Phys. Condens. Matter, (2005), 17, 361.
[8] I. Levin, S. A. Prosandeev, and J. E. Maslar, “Effects of 1:1 B-cation order on Raman scattering in complex perovskites AB’0.5B”0.5O3”, Appl. Phys Lett, (2005), 86, 011919.
[9] S. A. Prosandeev, U. Waghmare, I. Levin, and J. Maslar, “First-order Raman spectra of AB'1/2B"1/2O3 double perovskites”, Phys. Rev. B, (2005), 71, 214307.
[10] Rick Ubic, Yi Hu and I. Abrahams, “Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite”, Acta Crystallogr. Sec. B. ISSN, 0108-7681.
[11] D. Rout, V. Subramanian, K. Hariharan, and V. R. K. Murthy, V. Sivasubramanian, “Raman spectroscopic study of (Pb1-xBax)(Yb1/2Ta1/2)O3 ceramics”, J. Appl. Phys, (2005), 98, 103503.
[12] H. Zheng, I. M. Reaney, and G. D. C. Csete de Gyo¨rgyfalva, R. Ubic, J. Yarwood, M. P. Seabra and V. M. Ferreira, “Raman spectroscopy of CaTiO3-based perovskite solid solutions”, J. Mater. Res, (2004), 19, 2.
[13] I. Greogora, J. Petzelt, J. Pokorny, V. Vorlicek and Z. Zikmud, “Raman spectroscopy of the zone centre improper ferroelastic transition in ordered”, Solid State Commun., (1995), 94, 899,.
[14] M. A. Arillo, J. Gomez, M. L. Lopez, C. Pico, M. L. Veiga, “Structural and electrical characterization of new materials with perovskite structure”, Solid State Ionics, (1997), 95, 241.
[15] Igor Levin, Terrell A. Vanderah, Tammy G. Amos, and James E. Maslar, “Structural Behavior and Raman Spectra of Perovskite-Like Solid Solutions (1-x)LaMg0.5Ti0.5O3-xLa2/3TiO3”, Chem. Mater, (2005), 17, 3273.
[16] A. N. Salak, and V. M. Ferreira, “Structure and dielectric properties of the (1-x)La(Mg1/2Ti1/2)O3–x(Na1/2Bi1/2)TiO3 microwave ceramics”, J. Phys. Condens. Matter, (2006), 18, 5703.
[17] M. P. Seabra, M. Avdeev, V. M. Ferreira, R. C. Pullar, N. McN. Alford, “Structure and microwave dielectric properties of La(Mg0.5Ti0.5)O3–CaTiO3 system”, J. Europ. Ceram, (2003), 23, 2403.
[18] Rick Ubic, Yi Hu, Kouros Khamoushi, Isaac Abrahams, “Structure and properties of La(Zn1/2Ti1/2)O3”, J. Europ. Ceram, (2006), 26, 1787.
[19] V. Subramanian ,G. Santosh Babu, “Structure determination and microwave dielectric properties of La(MgSn)0.5O3 ceramics”, J. Europ. Ceram, (2007), 27, 2973.
[20] M. Avdeev, M. P. Seabra, V. M. Ferreira, “Structure evolution in La(Mg0.5Ti0.5)O3–SrTiO3 system”, Mater. Reas, (2002), 37 ,1459.
[21] N. W. Grimes, Robin W. Grimes, “Analysis of oxide dielectric data and the quantum theory of atomic polarizability”, J. Phys. Condens. Matter, (1997), 9 ,6737.
[22] N.W. Grimes, Robin W. Grimes, “Dielectric polarizability of ions and the corresponding effective number of electrons”, J. Phys. Condens. Matter, (1998), 10, 3029.
[23] A. M. GLAZER, “Simple Ways of Determining Perovskite Structures”, Acta Cryst, (1975), 31, 756.
[24] A. M. GLAZER, “The Classification of Tilted Octahedra in Perovskites”,
Acta Cryst. (1972). 28, 3384.
[25] C. T. Chia, P. J. Chang, and M. Y. Chen, I. N. Lin, ”Oxygen-octahedral phonon properties of xBaTiO3+(1−x)Ba(Mg1/3Ta2/3)O3 and xCa(Sc1/2Nb1/2)O3+(1−x)Ba(Sc1/2Nb1/2)O3 microwave ceramics”, J. Appl. Phys, (2007), 101, 084115.
[26] Dibyaranjan Routa, V. Subramaniana, K. Hariharana, V. Sivasubramanianb, “A comparative study of dielectric and Raman spectroscopy of Pb(Yb1/2Ta1/2)O3 and Pb(Yb1/2Nb1/2)O3”, Solid State Commun, (2007), 141,192.
[27] Dibyaranjan Rout, V. Subramanian, K. Hariharan, and V. R. K. Murthy, “Raman spectroscopic study of (Pb1−xBax)(Yb1/2Ta1/2)O3 ceramics”, J. Appl. Phys, (2005), 98, 103503.