簡易檢索 / 詳目顯示

研究生: 許學舜
Hsueh-Sun Hsu
論文名稱: 三維熱電微型致冷元件之研製
Development of 3D thermoelectric cooling microdevice
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 121
中文關鍵詞: 網版印刷熱電材料致冷元件
英文關鍵詞: screen-printing, thermoelectric material, cooling devices
論文種類: 學術論文
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代電子產品逐漸朝向輕薄短小及多功能整合發展,產品比例縮小同時仍需達到良好性能,故必須增加產品元件之密度。可以想像在相同面積的情況下,元件數量卻成比例增加,將帶來更多熱功率,使得元件處於高溫狀態中,降低元件使用壽命。因此,冷卻成為不可忽視的課題。微型熱電致冷元件具有體積小、無汙染、控溫精確等優點,符合目前產業趨勢。然而,傳統熱電致冷元件之製造方式,製程繁雜且生產成本高昂。若應用網版印刷技術製作高性能微型熱電致冷元件,除了可降低生產成本與時間之外,亦能簡化製程,有利於產業應用之普及化。
    本研究主要分為二大項目:(1) 以網版印刷技術製備熱電結構,對其席貝克係數、電阻率與熱傳導值進行特性評估;(2) 應用網版印刷技術,透過雙陶瓷基板的方式,並結合覆晶粒接合技術進行熱電致冷元件之製作。實驗結果顯示,n型材料Bi2Te3,其席貝克係數、電阻率與熱傳導值分別為-151.81 V/K、1.03  10-3 m和0.35 W/mK。在環境溫度為300 K之情況下,熱電優值可達0.0191。p型材料Sb2Te3,其席貝克係數、電阻率與熱傳導值分別為125.55 V/K、1.47  10-3 m和0.25 W/mK。在環境溫度為300 K之情況下,熱電優值可達0.0128。最後,將已知熱電特性之熱電材料,藉由網版印刷技術與覆晶接合技術,成功研製出40對熱電偶串接而成之三維熱電微型致冷元件。元件主要結構分為上、下電極基板及中間之熱電結構層,三層結構經精密對準後堆疊而成,其電極為尺寸100 m之方形陣列,電極厚度約為10 m,熱電結構則印製15 m左右之厚度。目前熱電致冷元件的製作,尚待進一步的製程改良,以提升其製程良率與性能品質,期望能在最短的時間內,完成元件的製作與效能測試。

    Nowadays, it is a trend that electronic products have become smaller and more functional. While we minimize our products, there are more devices which would be integrated into a limited area. As long as the number of devices has increased, it would create more heat which might damage the devices. To overcome this problem, we should put emphasis on cooling. Thermoelectric cooling microdevice has some advantages which meet current needs such as small volume, pollution-free and precise temperature control. Due to the fabrication processes of traditional thermoelectric, cooling microdevice is complicated and high cost. If we could fabricate high performance thermoelectric cooling microdevice through screen-printing technique, the fabrication process would be simplified. It can reduce the time and cost of production, and also benefit the popularization of industrial application.
    This research has two points as followed: (1) Using screen-printing technology to fabricate thermoelectric materials, and to measure Seebeck coefficient, electric conductivity, and thermal conductivity. (2) Using screen-printing technology to experiment and discuss the process of thermoelectric component fabricated by two-ceramics method. The Seebeck coefficient (), electrical resistivity () and thermal conductivity () are -151.81 V/K, 1.03  10-3 m, 0.35 W/mK and the ZT value of Bi2Te3 is 0.0191 at 300 K. The ,  and  are 125.55 V/K, 1.47  10-3 m, 0.25 W/mK and the ZT value of p-type Sb2Te3 is 0.0128 at 300 K. Finally, through screen-printing and flip-chip bonding technique, 3D thermoelectric cooling microdevice of 40 series pairs thermocouple were successfully made from thermoelectric material which we already knew of the properties. The structures of device mainly separated into upper electrode, thermoelectric structure, and bottom electrode. Those structures were stacked precisely. The electrode were square array with the size of 100 m, and the thickness 10 m. The thickness of thermoelectric structure were about 15 m. Currently, in order to elevate the yield rate and performance quality, the fabrication of thermoelectric cooling devices were expected to be improved. We hoped that we can accomplish the fabrication of devices and testing as soon as possible.

    中文摘要 I 英文摘要 II 總目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 網版印刷技術簡介 2 1.3 散熱元件簡介 3 1.4 研究動機與目的 13 1.5 論文架構 15 第二章 文獻回顧與理論探討 16 2.1 熱電效應 (thermoelectric effect) 16 2.1.1 席貝克效應 (seebeck effect) 16 2.1.2 帕耳帖效應 (peltier effect) 17 2.1.3 湯姆生效應 (thomson effect) 17 2.2 熱電優值 (figure of merit, ZT) 21 2.3 熱電材料的分類與選擇 22 2.4 熱電材料備製技術分類 26 2.5 傳統塊材製造技術 26 2.5.1 布里茲曼法 26 2.5.2 CZ法 26 2.6 粉末冶金技術 29 2.6.1 熱壓成形法 29 2.6.2 熱擠壓成形法 29 2.6.3 火花電漿燒結法 30 2.7 微加工技術 34 2.7.1 物理氣相沉積法 34 2.7.2 化學氣相沉積法 35 2.7.3 電化學沉積法 36 2.8 網版印刷應用於熱電元件的製作 48 2.9 網版印刷之控制條件 56 第三章 實驗設計與規劃 57 3.1 實驗設計 57 3.1.1 網印熱電材料膜圖形及模具之設計 57 3.1.2 微熱電致冷元件之結構設計 58 3.2 實驗規劃 65 3.2.1 厚膜熱電材料之實驗規劃 65 3.2.2 微熱電致冷元件之實驗規劃 65 3.3 實驗設備 70 3.4 結構分析與量測設備 78 3.5 材料熱電特性量測 82 3.5.1 席貝克係數量測方法 82 3.5.2 熱傳導值量測方法 83 3.5.3 導電率量測方法 84 第四章 實驗結果與討論 90 4.1 印刷成形之熱電材料膜 90 4.1.1 熱電漿料之組成 90 4.1.2 熱電膜之印製 90 4.1.2 燒結氣氛對熱電膜之影響 91 4.1.3 燒結溫度對熱電膜表面形貌之影響 92 4.2 熱電材料之特性量測與成份分析 99 4.2.1 熱電特性量測 99 4.2.2 熱電材料之成份分析 100 4.3 熱電微型致冷元件之製作 104 第五章 結論與未來展望 115 5.1 結論 115 5.2 未來展望 116 參考文獻 117

    1. 蔡永明, "網版製版印刷實務", 貝星貿易股份有限公司, (1997).
    2. http://www.heatpipe.net.cn/
    3. M. E. H. Tijani, J. C. H. Zeegers, and A. T. A. M. de Waele, "Design of thermoacoustic refrigerators", Cryogenics, (2002) pp. 4957.
    4. L. Jiang, J. M. Koo, S. Zeng, J. C. Mikkelsen, L. Zhang, P. Zhou, J. G. Santiago, T. W. Kenny, and K. E. Goodson, "Two-phase micro-channel heat sinks for an electrokinetic VLSI chip cooling system", 17th IEEE SEMI-THERM Symposium, (2001) pp. 153157.
    5. J. M. Koo, L. Jiang, L. Zhang, P. Zhou, S. B. Banerjee, T. W. Kenny, J. G. Santiago, and K. E. Goodson, "Modeling of two-phase microchannel heat sinks for VLSI chips", in Proc. 14th Ann. IEEE Int. MEMS-01 Conf., Interlaken, Switzerland, (2000) pp. 422426.
    6. S. Wu, J. Mai, Y. C. Tai, and C. M. Ho, "Micro heat exchanger using MEMS impinging jets", 12th Annual International Workshop on MEMS, Orlando, FL, USA, (1999) pp. 171176.
    7. C. H. Amon, J. Murthy, S. C. Yao, S. Narumanchi, C. F. Wu, and C. C. Hsieh, "MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for intergrated cooling of electronics", Experimental thermal and fluid science, (2001) pp. 231242.
    8. H. S. Choi, S. Yun, and K. Whang, "Development of a temperature-controlled car-seat system utilizing thermoelectric device", Applied Thermal Engineering, (2007) pp. 28412849.
    9. http://electronics-cooling.com/
    10. Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, and J. L. Schanen, "Thermal analysis of thermal spreaders used in power electronics cooling", Industry Applications Conference, 37th IAS Annual Meeting, vol. 1, (2002) pp. 216–221.
    11. J. Kim and E. Golliher, "Steady state model of a micro loop heat pipe", 18th IEEE EMI-THERM Symposium, (2002) pp. 137144.
    12. R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, and D. Wolf, "Testing of controller for a hybrid capillary pumped loop thermal control system", IEEE, (1989) pp. 6974.
    13. http://www.peltier-info.com/
    14. C. Brian Sales, "Smaller is cooler", Science, (2002) pp. 12481249.
    15. https://thermalhub.org/
    16. D. M. Rowe, "Thermoelectrics handbook: macro to nano", CRC Press, (2006) pp. 18.
    17. http://www.thermoelectrics.caltech.edu/
    18. http://www.fkf.mpg.de/
    19. O. Yamashita, S. Tomiyoshi, and K. Makita, "Bismuth telluride compounds with high thermoelectric figures of merit", Journal of Applied Physics, Vol. 93, Issue 1, January 1, (2003) pp. 368374.
    20. D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, and C. W. Hwang, "Thermoelectric properties of the n-type 85 % Bi2Te3 -15 % Bi2Se3 alloys doped with Sbl3 and CuBr", Journal of Materials Science, Vol. 33, (1998) pp. 55955600.
    21. T. S. Oh, D. B. Hyun, and N. V. Kolomoets, "Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys", Scripta Materialia, Vol. 42, (2000) pp. 849854.
    22. http://energisurya.wordpress.com/
    23. L. D. Ivanova, Y. V. Granatkina, N. V. Polikarpova, and E. I. Smirnova, "Selenium-doped Sb2Te3-Bi2Te3 crystals", Inorganic Materials, Vol. 33, (1997) pp. 558561.
    24. L. D. Ivanova, Y. V. Granatkina, and N. V. Polikarpova, "Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system", Inorganic Materials, Vol. 31, (1995) pp.678681.

    25. L. D. Ivanova, S. A. Brovikova, H. Sussmann, and P. Reinshaus, "Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 singal-crystals", Inorganic Materials, Vol. 31, (1995) pp. 682686.
    26. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting", Journal of Crystal Growth, Vol. 277, (2005) pp. 258263.
    27. http://www.dynacer.com/
    28. H. C. Kim, S. K. Lee, T. S. Oh, and D. B. Hyun, "Thermoelectric properties of the hot-pressed Bi2(Te, Se)3 alloys with the Bi2Se3 content and addition of scattering center", IEEE, 17th International Conference on Thermoelectric, (1998) pp. 174177.
    29. D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method", Journal of Materials Science, Vol. 36, No. 5, (2001) pp. 12851291.
    30. http://www.substech.com/
    31. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, Vol. 413, (2001) pp. 597602.
    32. J. Seo, D. Lee, C. Lee, and K. Park, "Microstructure, mechanical properties and thermoelectric properties of p-type Te-doped Bi0.5Sb1.5Te3 compounds fabricated by hot extrusion", Journal of Materials Science Letters, Vol. 16, (1997) pp. 11531156.
    33. http://www.shi.co.jp/
    34. D. W. Lee, K. H. Kim, J. Matsushitaa, K. Niiharab, K. H. Auh, and K. B. Shim, "Thermoelectric properties of silicon hexaboride prepared by spark plasma sintering method", Ceramic Processing Research, Vol. 3, No. 3, (2002) pp. 182185.
    35. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type (Bi, Sb)2Te3 fabricated by spark plasma sintering", Scripta Materialia, Vol. 52, (2005) pp. 347351.
    36. L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, and J. H. Correia, "On-chip array of thermoelectric Peltier microcoolers", Sensors and actuators A, Vol. 145-146, (2008) pp. 7580.
    37. A. Yadav, K. Pipe, and M. Shtein, "Fiber-based flexible thermoelectric power generator", Journal of Power Sources 175, (2008) pp. 909913.
    38. 伍秀菁 等人, "真空技術與應用", 儀器科技研究中心, (2001).
    39. D. H. Kim, E. Byon, G. H. Lee, and S. Cho, "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films, Vol. 510, (2006) pp. 148153.
    40. http://int.ch.liv.ac.uk/
    41. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, and A. Boyer, "MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor", Thin Solid Films, Vol. 315, (1998) pp. 99103.
    42. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, and A. Boyer, "Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD", Materials Science and Engineering B, Vol. 64, (1999) pp. 1924.
    43. A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, and A. Boyer, "Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices", Journal of Applied Physics Vol. 89, No. 9, (2001) pp. 50095014.
    44. J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, and J. P. Fleurial, "Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL)", 21th International Conference of Thermoelectrics, (2002) pp. 535539.
    45. G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by a MEMS-like electrochemical process", Nature materials, Vol. 2, (2003) pp. 528531.

    46. E. Schwyter, W. Glatz, L. Durrer, and Ch. Hierold, "Flexible Micro
    Thermoelectric Generator based on Electroplated Bi2+xTe3-x", DPIP
    of MEMS/MOEMS, (2008) pp. 9-11.
    47. G. Leimkűhler, I. Kerkamm, and R. R. Koch, "Electrodeposition of antimony telluride", Journal of The Electrochemical Society, Vol. 149, (2002) pp. 74478.
    48. http://www.materialsnet.com.tw/
    49. J. Weber, K. P. Kamloth, F. Haase, P. Detemple, F. Völklein, and T. Doll, "Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics", Sensors and Actuators A, Vol. 132, (2006) pp. 325330.
    50. J. Wüsten and P. K. Karin, "Organic thermogenerators for energy autarkic systems on flexible substrates", Journal of Physics D, Vol. 41, (2008) pp. 135113.
    51. P. Markowski, A. Dziedzic, "Planar and three-dimensional thick-film thermoelectric microgenerators", Microelectronics Reliability 48, (2008) pp. 890–896.
    52. F. M. Smits, "Measurements of sheet resistivity with the four-point probe", Bell System Technical Journal, (1958) pp. 711718.
    53. M. Akasaka, T. Iida, K. Nishio, and Y. Takanashi, "Composition dependent thermoelectric properties of sintered Mg2Si1-xGex (x= 0 to 1) initiated from a melt-grown polycrystalline source", Thin Solid Films, Vol. 515, (2007) pp. 82378241.

    無法下載圖示 本全文未授權公開
    QR CODE