研究生: |
林懿潔 |
---|---|
論文名稱: |
含主族元素 (硫、鉍) 之過渡金屬 (鉻、錳、鉬) 團簇化合物的合成、化性與物性研究 |
指導教授: | 謝明惠 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 274 |
中文關鍵詞: | 金屬團簇化合物 、離子交換反應 、混合金屬 、機械研磨 、磁性 |
英文關鍵詞: | metal cluster, ion exchange reaction, mixed metal, mechanochemical reaction, magnetism |
論文種類: | 學術論文 |
相關次數: | 點閱:213 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(1) Bi─Mo 系統
將 [BiMo3(CO)9(μ-OC2H4OCH3)3Na]─ (1) 與一系列鹼土金屬氯化物 (MgCl2、CaCl2、SrCl2、BaCl2˙2H2O) 於 MeCN 或 THF 下進行離子交換反應得到一系列以 OC2H4OCH3 為配基之鉍三鉬羰基含鹼土金屬離子團簇化合物 BiMo3(CO)9(μ-OC2H4OCH3)3ML (ML = Mg, 2; Ca(NCMe)2, 3a; Ca(DMF)2, 3b; Sr(C3H6O)2, 4c) 及藉由羰基配位所形成之聚合物 [BiMo3(CO)9(μ-OC2H4OCH3)3ML]n (ML = Sr(NCMe), 4a; Sr(OH2), 4b; Ba(NCMe)(OH2), 5),進一步利用機械研磨方式探討 4a、4b 以及 4c 三者間固態之轉換關係。本研究以電化學、電子吸收光譜以及核磁共振光譜等方法,探究化合物 2、3a、3b 以及 4c 與聚合物 4a、4b 以及 5 之鹼土金屬陰電性效應與聚合效應。進一步藉由 NMR 滴定實驗比較鹼金屬 (Li+、K+)、鹼土金屬 (Mg2+、Ca2+、Sr2+、Ba2+)、過渡金屬 (Zn2+、Cd2+) 以及主族金屬 (Tl+、Sn2+、Pb2+) 離子置換化合物 1中 Na+ 離子能力。
(2) E─Cr (E = S, Se, Te) 系統
將含氫配子之雙三角錐化合物 [HS2Cr3(CO)9]3─ (1) 分別與醯氯類 (PhCOCl、CH3(CH2)2COCl) 試劑以及鹵烷類試劑 (CH3(CH2)4Br、CH3(CH2)5Br) 於 MeCN 反應,分別形成雙三角錐化合物 [S2Cr3(CO)10]2─ (2a) 與雙蝴蝶構型之 [{S2Cr2(CO)7}2Cr]3─ (3),其中化合物 1 與醯氯類試劑反應,可得到醛類產物 (PhCOH、CH3(CH2)2COH)。再者,化合物 1 與兩當量金屬試劑 Mn(CO)5Br 於 KOH 鹼性條件下反應,可形成混和錳鉻之羰基化合物 [S2Cr3(CO)10{Mn(CO)5}2]2─ (4) 和化合物 2a。化合物 4 以金字塔構型 S2Cr3 為主體,於每一個 S 原子端接 Mn(CO)5 片段。進一步藉由電化學以及電子吸收光譜探討 S─Cr 系列化合物同核或異核擴核性應以及相關雙三角錐構型之 [E2Cr3(CO)10]2─ (E = S、Se、Te) 之主族效應,並搭配理論計算佐證。
The metathesis recation of [BiMo3(CO)9(μ-OC2H4OCH3)3Na]─ (1) with a series of alkaline earth metal−chloride complexation (MgCl2、CaCl2、SrCl2、BaCl2˙2H2O) in MeCN or THF solution to form a series of the BiMo3(CO)9-based with three methoxyethanol ligands bound to alkaline earth metal ion clusters BiMo3(CO)9(μ-OC2H4OCH3)3ML (ML = Mg, 2; Ca(NCMe)2, 3a; Ca(DMF)2, 3b; Sr(OC3H6)2, 4a) and 1D zigzag polymeric cluster [BiMo3(CO)9(μ-OC2H4OCH3)3ML]n (ML = Sr(NCMe), 4a; Sr(OH2), 4b; Ba(NCMe)(OH2), 5) were produced. Polymers 4a, 4b and 5 consisted of the BiMo3(CO)9 unit linked by the O atom of the CO in one unit to the Sr or Ba atom of the adjacent one, to form 1D zigzag structure. Furthermore, mechanochemical solid-state transformation among clusters 4a, 4b, and 4c. Moreover, The NMR, electron absorptions measurements, and electrochemistry of clusters 2-5 were discussed in term of metal electronegativity and polymerization effect. On the other hand, the metalation of cluster 1 with a series of metal cations (Li+, K+, Mg2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Tl+, Sn2+, Pb2+) was investigated by 1H NMR titration.
Trigonal-bipyramidal carbonyl hydride cluster [HS2Cr3(CO)9]3– (1) with acyl chloride RCOCl (R = Ph, CH3(CH2)2) or alkyl bromide RBr (R = CH3(CH2)4, CH3(CH2)5) in MeCN led to the TBP cluster [S2Cr3(CO)10]2– (2a) and the Cr-linked S2Cr2(CO)-based cluster [Cr{S2Cr2(CO)7}2]3– (3), respectivity, and the reactions of cluster 1 with RCOCl yielded aldehyde RCOH. Further studies showed that 1 with 2 eqiv of Mn(CO)5Br in MeCN to produce mixed Mr-Cr sulfide carbonyl cluster [S2Cr3(CO)10{Mn(CO)5}2]2─ (4) and 2a, the dianionic cluster 4 was shown to display a S2Cr3 square-pyramidal core with each S atom externally coordinated by one Mn(CO)5 group. Moreover, The electron absorptions measurements, and electrochemistry of clusters 1─4 were studied in term of cluster expansion effect and chalcogenide effect, which were elucidated by molcular orbital calculations of density functional theory.
1.10 參考文獻
1. Carbonaro, L.; Isola, M.; Pegna, P. L.; Senatore, L. Inorg. Chem. 1999, 38, 5519−5525.
2. (a) Custelcean, R.; Moyer, B. A. Eur. J. Inorg. Chem. 2007, 1321–1340. (b) Maubert, B. M.; Nelson, J.; McKee, V.; Town, R. M.; PàJ, I. Chem. Soc., Dalton Trans. 2001, 1395–1397. (c) Gawenis, J. A.; Holman, K. T.; Atwood, J. L.; Jurisson, S. S. Inorg. Chem. 2002, 41, 6028–6031. (d) Beer, P. D.; Hopkins, P. K.; McKinney, J. D. Chem. Commun. 1999, 1253–1254. (e) Hogue, C. Chem. Eng. News 2003, 81, 37–46.
3. (a) Akine, S.; Taniguchi, T.; Saiki, T.; Nabeshima, T. J. Am. Chem. Soc. 2005, 127, 540–541. (b) Kendrick, M. J.; May, M. T.; Plinska, M. J.; Robinson, K. D. Metals in Biological Systems; Ellis Horwood Ltd.: Chichester, England, 1992; Chapters 3-5.
4. (a) Izatt, R. M.; Pawlak, K. Bradshaw, J. S. Chem. Rev. 1995, 95, 2529–2585. (b) Pedersen, C. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 1021–1027.
5. Klausmeyer, K. K.; Wilson, S. R.; Rauchfuss, T. B. J. Am. Chem. Soc. 1999, 121, 2705–2711.
6. (a) Clegg, W.; Compton, N. A.; Errington, R. J.; Fisher, G. A.; Norman, N. C.; Marder, T. B. J. Chem. Soc. Dalton Trans. 1991, 11, 2887–2895. (b) Shieh, M.; Mia, F.-D.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1993, 32, 2785–2787. (c) Xu, L.; Ugrinov, A.; Sevov, S. C. J. Am. Chem. Soc. 2001, 123, 4901–4902.
7. 蔡宛珍,國立臺灣師範大學碩士論文,2006。
8. 吳沛凡,國立臺灣師範大學碩士論文,2007。
9. 游翔竣,國立臺灣師範大學碩士論文,2013。
10. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767.
11. (a) Dick, D. G.; Stephan, D. W. Organometallics 1990, 9, 1910−1916. (b) Benson, E. E.; Kubiak, C. P.
12. (a) Ulmer, S. M.; Skarstad, P. M., Burlitch, J. M.; Hughes, R. E. J. Am. Chem. Soc. 1973, 95, 4469-4471. (b) Sockwell, S. C.; Tanner, P. S.; Hanusa, T. P. Organometallics 1992, 11, 2634−2638. (c) Niemeyer, M.; Power, P. P. Inorg. Chem. 1997, 36, 4688–4696. (d) Blake, M. P.; Kaltsoyannis, N.; Mountord, P. J. Am. Chem. Soc. 2011, 133, 15358-15358. (e) Braunschweig, H.; Damme, A.; Gamon, D.; Kelch, H.; Krummenacher, I.; Kupfer, T.; Radacki, K. Chem. Eur. J. 2012, 18, 8430–8436.
13. Whitmire, K. H. J. Am. Chem. Soc. 1985, 107, 1056–1057.
14. Hamilton, D. M.; Jr.; Willis, W. S.; Stucky, G. D. J. Am. Chem. Soc. 1981, 103, 4255–4256.
15. Dobrawa, R.; Lysetska, M.; Ballester, P.; Grüne, M.; Würthner, F. Macromolcules 2005, 38, 1315–1325.
16. Shriver, D. F.; Drezdzon, M. A. The Manpulation of Air-Sensitive Compound; Wiley: New York, 1986.
17. Gordon, A. J.; Ford, A. The Chemist’s Compasion; Wiley: New York, 1972, p445.
18. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
19. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
2.7 參考文獻
1. (a) Norton, J. H. In Fundamental Research inHomogeneous Catalysis;
Tsutsui,M., Ugo, R., Eds.; PlenumPress: New York, 1977; Vol. 1, p 99. (b) Metal Clusters in Catalysis, Studies in Surface Science and Catalysis Series; Gates, B. C., Guczi, L., Knozinger, H., Eds.; Elsevier: New York, 1986; Vol. 29.
2. (a) Kahn, O. Molcular Magnetism; VCH: Weinheim, 1993. (b) Matho-niere, C.; Sutter, J.-P.; Yakhmi, J. V. Bimetallicmagnets: Present and perspectives. In Magnetism: molcules to materials; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, 2002; Vol.4.
3. (a) Femoni, C.; Iapalucci, M. C.; Kaswalder, F.; Longoni, G.; Zacchini, S. Coord. Chem. Rev. 2006, 250, 1580−1604. (b) Mednikov, E. G.; Jewell, M. C.; Dahl, L. F. J. Am. Chem. Soc. 2007, 129, 11619−11630.
4. (a) Roof, L. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1992, 31, 2058−2064. (b) Frey, G. D.; Herdweck, E.; Herrmann, W. A. J. Organomet. Chem. 2006, 691, 2465−2478.
5. (a) Hoefler, M.; Tebble, K.-F.; Veit, H.; Weiler, N. E. J. Am. Chem. Soc. 1983, 105, 6338−6339. (b) Borm, J.; Huttner, G.; Zsolnai, L. Angew. Chem. Int. Ed. Engl. 1985, 24, 1069−1070. (c) Darensbourg, D. J.; Zalewski, D. J.; Sanchez, K. M.; Delord, T. Inorg. Chem. 1988, 27, 821−829. (d) Shieh, M; Ho, L.-F.; Jang, L.-F.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem. Commun. 2001, 1014−1015. (e) Shieh, M.; Lin, S.-F.; Guo, Y.-W.; Hsu, M.-H.; Lai, Y.-W. Orgamometallics 2004, 23, 5182−5187.
6. Shieh, M.; Lin, C.-N.; Miu, C.-Y.; Hsu, M.-H.; Pan, Y.-W.; Ho, L.-F. Inorg. Chem. 2010, 49, 8056−8066.
7. 何莉芳,國立臺灣師範大學碩士論文,2000。
8. 詹昂,國立臺灣師範大學碩士論文,2013。
9. (a) Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35, 237−248. (b) Zhang, Y.; Hanna, B. S.; Dineen, A.; Williard, P. G.; Bernskoetter, W. H. Orgamometallics 2013, 32, 3969−3979. (c) Shieh, M.; Chu, Y.-Y.; Jang, L.-F.; Ho, C. H. Inorg. Chem. 2014, 53, 4284−4286.
10. Brown, H. C.; Rao, B. C. S. J. Am. Chem. Soc. 1958, 80, 5377−5380.
11. (a) Orimo, S.-I.; Nakamori, Y.; Eliseo, J. R.; Züttel, A.; Jensen, C. M. Chem. Rev. 2007, 107, 4111−4132. (b) Belkova, N. V.; Besora, M.; Epstein, L. M.; Lledos, A.; Maseras, F.; Shubina, E. S. J. Am. Chem. Soc. 2003, 125, 7715−7725.
12. Braunstein, P.; Tiripicchio, A.; Camellni, M. T.; Sappa, E. Inorg. Chem. 1981, 20, 3586−3589.
13. (a) Küllmer, V.; Röttinger, E.; Vahrenkamp, H. J. Chem. Soc. Chem. Comm. 1977, 782−783. (b) Adams, R. D.; Captain, B.; Kwon, O-S.; Miao, S. Inorg. Chem. 2003, 42, 3356−3365.
14. Shieh, M.; Miu, C.-Y.; Huang, K.-C.; Lee, C.-F.; Chen, B.-G. Inorg. Chem. 2011, 50, 7735−7748.
15. Shriver, D. F.; Drezdzon, M. A. The Manpulation of Air-Sensitive Compound; Wiley: New York, 1986.
16. Gordon, A. J.; Ford, A. The Chemist’s Compasion; Wiley: New York, 1972, p445.
17. 陳佩琪,國立臺灣師範大學碩士論文,2007。
18. 謝明惠,林建男,未發表之結果。
19. (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155−2160. (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173−9182. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
21. Becke, A. D. Phys. Rev. A 1988, 38, 3098−3100.
22. Read, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899−926.
23. (a) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187−196; (b) Gorelsky, S. I. AOMix: Program for Molcular Orbital Analysis, http://www.sg-chem.net/, University of Ottawa, 2007.
24. (a) Burke, K.; Predew, J. P.; Wang, Y. In Electronic Density Functional Theory: Recent Pregress and New Direction; Dobson, J. F., Vignale, G., Das, M. P., Eds., Plenum: New York, 1988. (b) Predew, J. P. Phys Rev. B. 1986, 33, 8822−8824. (c) Predew, J. P.; Wang, Y. Phys. Rev. B. 1992, 45, 13244−13249.
25. Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029.
26. Boudreaux, E. A.; Mulay, L. N. Theory and Application of Molcular Paramagnetism; Wiley: New York, 1976.
27. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
28. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
1. Shriver, D. F.; Drezdzon, M. A. The Manpulation of Air-Sensitive Compound; Wiley: New York, 1986.
2. Gordon, A. J.; Ford, A. The Chemist’s Compasion; Wiley: New York, 1972, p445.
3. 蔡宛珍,國立臺灣師範大學碩士論文,2006。
4. 陳思瑋,國立臺灣師範大學碩士論文,2011。
5. 潘奕文,國立臺灣師範大學碩士論文,2008。
6. 陳佩琪,國立臺灣師範大學碩士論文,2007。
7. 謝明惠,簡佑芩,未發表之結果。
8. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
9. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.