簡易檢索 / 詳目顯示

研究生: 方彥博
Fang, Yan-Bo
論文名稱: 以超音波輔助浸鍍法製備TiO2薄膜與光觸媒改質特性之研究
Research on Preparation of TiO2 Thin Film by Using the Ultrasonic-assisted Dip Coating and Characteristics of Photocatalytic Modification
指導教授: 鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 超音波輔助法浸鍍法二氧化鈦薄膜光觸媒改質光催化特性
英文關鍵詞: ultrasonic-assisted, dip coating, TiO2 thin films, modified photocatalyst, photocatalytic properties
論文種類: 學術論文
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以超音波輔助浸鍍法(ultrasonic–assisted dip coating)在玻璃基材上製備二氧化鈦(titanium dioxide, TiO2)薄膜。利用光譜儀、XRD、HR-FESEM等儀器進行量測並分析鍍液濃度、浸鍍次數與退火溫度等製程參數對於薄膜結構與特性的影響。接著利用接觸角量測儀以照光前後接觸角度變化量去篩選出最佳製程參數以作為後續光觸媒改質實驗的樣本。最後被選出的最佳製程參數樣本以硝酸鋰、硝酸鈉與硝酸鉀進行改質,並在不同照光波長之下進行甲基藍光催化降解實驗以評估改質TiO2薄膜的光觸媒性能。實驗結果顯示,退火溫度400°C以上即可成功製備具有銳鈦礦結構之TiO2薄膜。TiO2薄膜的光譜紅位移現象隨著浸鍍次數增加而增強。經由硝酸鋰、硝酸鈉改質試片於紫外光波長照射之後,其接觸角最佳可達8.04°,且改質後試片以可見光波長照射後仍可產生光催化反應並縮短能隙。改質試片於紫外光與可見光照射下均可提升光催化降解甲基藍的能力,其中以硝酸鋰改質具有最佳的效果。經硝酸鋰改質於紫外光與可見光照射下對甲基藍降解效能分別可提升15.88%與9.19%。

    In this study, the titanium dioxide (TiO2) thin film was prepared on glass substrate by using ultrasonic-assisted dip coating method. The structure and characteristics of TiO2 thin film were measured by using spectrometer, XRD, HR-FESEM and other suitable equipment; to analysis the relationship between process parameters (concentration of coating solution, dip-coating times, and annealing temperature) and characteristics of TiO2 thin film. Then, the optimal process parameter was determined by a contact angle instrument to measure contact angle variation before and after irradiation, and was adopted in the modified photocatalyst experiments. The samples with optimal process parameter were modified with lithium nitrate (LiNO3), sodium nitrate (NaNO3), and potassium nitrate (KNO3); then their photocatalyst performance of TiO2 thin film was tested by the photocatalytic degradation of methylene blue under different irradiation wavelengths.

    The results show that the annealing temperature above 400 °C can be successfully prepared the TiO2 thin film with anatase structures. Spectral red shift of TiO2 thin film is enhanced with increasing dip-coating times. The minimum contact angle of modified samples with LiNO3 and NaNO3 can reduce to 8.04° after ultraviolet irradiation, and the modified samples still perform photocatalysis reaction and shorten the band gap under irradiation of visible light. The modified samples under irradiation of ultraviolet or visible light can improve the photocatalytic degradation performance for methylene blue. Among them, the modified samples with LiNO3 have the optimal performance. The modified sample with LiNO3 under irradiation of ultraviolet and visible light can improve the degradation performance of methylene blue of 15.88% and 9.19%, respectively, compared with the non-modified sample.

    摘要 ii Abstract iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第壹章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究方法 4 1.5 研究架構 5 第貳章 理論探討與文獻回顧 7 2.1 光觸媒之簡介 7 2.2 二氧化鈦之介紹 9 2.3 二氧化鈦之光催化反應 11 2.3.1 光波長影響 12 2.3.2 反應溫度影響 14 2.3.3 濕度影響 14 2.3.4 氧氣濃度影響 15 2.4 光催化降解 16 2.5 光觸媒改質 17 2.6 溶膠–凝膠法 21 2.6.1 溶膠–凝膠法簡介 21 2.6.2 溶膠–凝膠法之反應原理 22 2.7 薄膜製備方法 24 2.8 溶膠–凝膠法製備薄膜方式 26 2.8.1 噴鍍法 26 2.8.2 旋鍍法 26 2.8.3 浸鍍法 27 2.9 薄膜熱處理 29 2.10 超音波處理 32 第參章 實驗設計與規劃 35 3.1 實驗設計 35 3.2 實驗材料 37 3.3 實驗設備 38 3.4 二氧化鈦薄膜製備 39 3.4.1 過氧鈦酸鍍液製作 39 3.4.2 試片基材前處理 41 3.4.3 超音波處理 41 3.4.4 製備薄膜試片 43 3.4.5 實驗參數設定 45 3.5 薄膜特性量測設備 48 3.5.1 薄膜結晶型態量測 48 3.5.2 薄膜表面特性量測 48 3.6 薄膜光催化特性量測 51 3.6.1 薄膜光學特性量測 51 3.6.2 薄膜接觸角量測 51 3.7 光觸媒薄膜改質實驗設計 54 3.8 甲基藍降解實驗設計 54 第肆章 實驗結果與討論 57 4.1 製程參數對TiO2薄膜基本特性分析結果與討論 57 4.1.1 薄膜表面均勻性分析 57 4.1.2 薄膜結晶型態分析 59 4.1.3 薄膜表面形貌 72 4.1.4 薄膜塗佈厚度分析 72 4.2 薄膜光催化特性量測分析結果 81 4.2.1 薄膜光學特性量測分析 81 4.2.2 薄膜接觸角特性分析 85 4.3 光觸媒改質實驗 88 4.3.1 改質型薄膜接觸角特性分析 88 4.3.2 改質型薄膜之能隙 89 4.4 甲基藍降解實驗 94 第伍章 結論與未來展望 103 5.1 結論 103 5.2 未來展望 105 參考文獻 106 略傳 112

    [1] L. Miao, S. Tanemura, S. Toh, K. Kaneko and M. Tanemura,” Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol–gel template process, ” Journal Of Crystal Growth, vol. 264, pp. 246-252, 2004.
    [2] L. Miao, S. Tanemura, S. Toh, K. Kaneko and M. Tanemura, “Heating-sol–gel template process for the growth of TiO2 nanorods with rutile and anatase structure,” Applied Surface Science, vol. 238, pp. 175-179, 2004.
    [3] C. Y. Wu, Y. L. Lee, Y. S. Lo, C. J. Lin and C. H. Wu, “Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating,” Applied Surface Science, vol. 280, pp. 737-744, 2013.
    [4] B. R. Sankapal, M. Ch. Lux-Steiner and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Department of Heterogeneous Material Systems, vol. 239, pp. 165-170, 2005.
    [5] K. Puangrat, A. Jirapat and P. Siriwan, “Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process,” Science and Technology of Advanced Materials, vol. 6, pp. 352-358, 2005.
    [6] S. Karuppuchamy, M. Iwasaki and H. Minoura, “Physico-chemical, photoelectrochemical and photocatalytic properties of electrodeposited nanocrystalline titanium dioxide thin films,” Department of Applied Chemistry, vol. 81, pp. 708-712, 2007.
    [7] L. Suqin and H. Kelong, “Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate,” Solar Energy Materials & Solar Cells, vol. 85, pp. 125-131, 2005.
    [8] K. Eufinger, D. Poelman, H. Poelman, R. De Gryse and G.B. Marin, “Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films,” Applied Surface Science, vol. 254, pp. 148-152, 2007.
    [9] I. Sorar, E. Pehlivan, G.A. Niklasson and C.G. Granqvist, “Electrochromism of DC magnetron sputtered TiO2 thin films: Role of deposition parameters,” Solar Energy Materials and Solar Cells, vol. 115, pp. 172-180, 2013.
    [10] Z. Liu, H. Liu, T. Hashimoto, G. E. Thompson and P. Skeldon, “Anodic oxide film growth on thin magnetron sputter-deposited titanium layer,” Materials Characterization, vol. 98, pp. 102-106, 2014.
    [11] B. H. Kim, J. Y. Lee, Y. H. Choa, M. Higuchi and N. Mizutani, “Preparation of TiO2 thin film by liquid sprayed mist CVD method,” Materials Science and Engineering: B, vol. 107, pp. 289-294, 2004.
    [12] P. S. Shinde and C. H. Bhosale, “Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells,” Journal of Analytical and Applied Pyrolysis, vol. 82, pp. 83-88, 2008.
    [13] V. G. Bessergenev, I. V. Khmelinskii, R. J. F. Pereira, V. V. Krisuk, A. E. Turgambaeva and I. K. Igumenov, “Preparation of TiO2 films by CVD method and its electrical, structural and optical properties,” The Fouth Iberian Vacuum Meeting, vol. 64, pp. 275-279, 2002.
    [14] U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” Journal of Photochemistry and Photobiology C:Photochemistry Reviews, vol. 9, pp. 1-12, 2008.
    [15] W. Z. Tang and H. An, “Pototcatalytic degradation kinetics and mechanism of acid bule 40 by TiO2/UV in aqueous solution,” Chemosphere, vol. 31, pp. 4171-4183, 1995.
    [16] N. Abdullah and S. K. Kamarudin, “Titanium dioxide in fuel cell technology: An overview,” Journal of Power Sources, vol. 278, pp. 109-118, 2015.
    [17] A.L. Linsebigier, Y.L. Guangquan and T.J. John, “Photocatalysis on TiO2 surface:principles mechanism and selected results,” Chem Reviews, vol. 95, pp. 735-758, 1995.
    [18] D. R Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2004.
    [19] A. Fujishima, K. Hashimoto and T. Watanabe, TiO2 photocatalysis. Fundaments and applications, 1st ed. Tokyo: BKC, 1999.
    [20] K. Hashimoto, K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai and Y. Kera, “Photocatalytic oxidation of nitrogen oxides over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Envi, vol. 30, pp. 429-436, 2001.
    [21] B. Xia, H. Huang and Y. Xie, “Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis,” Materials Science and Engineering: B, vol. 57, pp. 150-154, 1999.
    [22] O. Carp, C. L. Huisman and A. Reller, “Photocatalysis reactivity of titanium oxide photoinduced reactivityof titanium oxide,” Journal of Solid State Chemistry, vol. 32, pp. 33-177, 2004.
    [23] M. Bekholet, “Photocatalytic bactericidal activity of TiO2 in aqueous suspensions of E. coli,” Water Science and Technology, vol. 35, pp. 95-100, 1997.
    [24] K. Sunda, Y. Kikuchi, K. Hashimoto and A. Fujishima, “Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts,” Environmental Science and Technology, vol. 32, pp. 726-728, 1998.
    [25] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, “Enviromental Applications of Semiconductor Photocatalysis,” Chemical Reviews, vol. 95, pp. 69-96, 1995.
    [26] L. Wan, J. F. Li, J. Y. Feng, W. Sun and Z. Q. Mao, “Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation,” Materials Science and Engineering B, vol. 139, pp. 216-220, 2007.
    [27] S. Sankar and K. G. Gopchandran, “Effect on growth parameters on structural, electrical and optical properties of titanium oxide thin films,” Indian Journal of Pure & Applied Physics, vol. 46, pp. 791-796, 2008.
    [28] T. N. Obee and R. T. Brown, “TiO2 photocatalysis for indoor air applications:effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluence, and 1,3-butadience,” Environmental Science & Technology, vol. 29, pp. 1223-1231, 1995.
    [29] 王國華,以UV/TiO2程序處理氣相中三氯乙烯之研究,國立中興大學環境工程研究所,博士論文,1998。
    [30] A. W. Jacoby, D. M. Blake, J. A. Fennell, J. E. Boulter and L. M. Vargo, “Hetergeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” The 88th Air & Waste Management Assoication, vol. 46, pp. 891-898, 1996.
    [31] I. K. Konstantinou, T. M. Sakellarides, V. A. Sakkas and T. A. Albanis, “Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions,” Environmental Science & Technology, vol. 35, pp. 398-405, 2001.
    [32] S. Sato and J. M. White, “Photodecomposition of water over Pt/TiO2 catalysts,” Chemical Physics Letters, vol. 72, pp. 83-86, 1980.
    [33] P. Papaefthimiou, T. Loannides and X. E Verykios , “Performance of doped Pt/TiO2 (W6+) catalysts for combustion of volatile organic compounds (VOCs),” Applied Catalysis B: Environmental, vol. 18, pp. 75-92, 1998.
    [34] S. Wang, K. K. Meng, L. Zhao, Q. Jiang and J. S. Lian, “Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis,” Ceramics International, vol. 40, pp. 5107-5110, 2014.
    [35] Z. Hamden, D. P. Ferreira, L. F. Vieira Ferreira and S. Bouattour, “Li-Y doped and codoped TiO2 thin films: Enhancement of photocatalytic activity under visible light irradiation,” Ceramics International, vol. 40, pp. 3227-3235, 2014.
    [36] R. Nakamura, T. Tanaka and Y. Nakato, “Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes,” Journal of Physical Chemistry B, pp. 108, pp. 10617-10620, 2004.
    [37] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, pp. 269-271, 2001.
    [38] A. Fujishima, X. Zhang and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, vol. 63, pp. 515-582, 2008.
    [39] S. Yin, P. Zhang, B. Liu, X. liu, T. Sato, D. Xue and S. W. Lee, “Microwave-assisted hydrothermal synthesis of monoclinic nitrogen-doped titania photocatalyst and its DeNOX ability under visible LED light irradiation,” Research on Chemical Intermediates, vol. 36, pp. 69-75, 2010.
    [40] M. E. Hassan, L. C. Cong, G. L. Liu, D. W. Zhu and J. B. Cai, “Synthesis and characterization of C-doped TiO2 thin films for visible-light-induced photocatalytic degradation of methyl orange,” Applied Surface Science, vol. 294, pp. 89-94, 2014.
    [41] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, “Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer between Couoled Semiconductors,” Journal of Photochemistry and Photobiology A:Chemistry, vol. 85, pp. 247-255, 1995.
    [42] R. Katoh, K. Yaguchi, M. Murai, S. Watanabe and A. Furube, “Differences in adsorption behavior of N3 dye on flat and nanoporous TiO2 surfaces,” Chemical Physics Letters, vol. 497, pp. 48-51, 2014.
    [43] J. J. Ebelmen, Ann. Chim. Phys, 16, 129, 1846.
    [44] W. Geffcken and E. Berger, German Patent, 736, 411, 1939.
    [45] D. M. Roy and R. Roy, “Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O,” AM. Mineralogist, vol. 40, pp. 147-148, 1955.
    [46] H. Dislich, Glastechn. Ber., 44, 1, 1971.
    [47] 黃瑞明,以溶膠凝膠法摻雜磷改質二氧化鈦薄膜光觸媒之特性,國立高雄應用科技大學,碩士論文,2008。
    [48] X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials:Synthesis, Properties. Modifications, and Applications,” Chemical Reviews, vol. 107, pp. 2891-2959, 2007.
    [49] 張儷瓊,以溶膠-凝膠法製備LaMnO3摻雜Sn之超巨磁阻薄膜,國立台北科技大學,碩士論文,2005。
    [50] 李邦哲,薄膜成型技術新紀元,台灣綜合展望, vol. 7, pp. 65-71, 2003.
    [51] 黃啟涵,以溶膠凝膠法製備施受體共摻雜鉭酸鍶鉍薄膜,國立東華大學材料科學與工程學研究所,碩士論文,2003。
    [52] 呂宗昕,圖解奈米科技與光觸媒,台北:商周,2003。
    [53] A. Kingpetch, W. A. Nirun and V. Patama, “Effect of Heat Treatment on Phase Transformation of TiO2 and Its Reflectance Properties,” Journal of Metals,aterials and Minerals, vol. 23, pp. 43-49, 2013.
    [54] D. J. Kim, S. H. Hahn, S. H. Oh and E. J. Kim, “Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating,” Materials Letters, vol. 57, pp. 355-360, 2002.
    [55] K. Puangrat, A. Jirapat and P. Siriwan, “Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process,” Science and Technology of Advanced Materials, vol. 6, pp. 352-358, 2005.
    [56] A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu and S. Agilan, “Effect of annealing temperature on nanocrystalline TiO2 thin films prepared by sol–gel dip coating method,” Optik-International Journal for Light and Electron Optics, vol. 124, pp. 6201-6204, 2013.
    [57] F. Huang, H. Z. Zhang and J. F. Banfield, “Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS,” Nano Letters, vol. 3, pp. 373–378, 2003.
    [58] C. Y. Wu, Y. L. Lee, Y. S. Lo, C. J. Lin and C. H. Wu, “Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol–gel spin coating,” Applied Surface Science, vol. 280, pp. 737-744, 2013.
    [59] 賴耿陽,超音波工學理論實務:材料、機械、電機、化學、醫學、各個分野之應用製作技術,二刷一版,富漢出版社1999。
    [60] O. Hamdaoui, E. Naffrechox, L. Tifouti and C. Peterier, “Effect of ultrasound on adsorption–desorption of p–chlorphenol on granular activated carbon,” Ultrasonics Sonochemistry, vol. 10, pp. 109-114, 2003.
    [61] Y. Lu, “Improvement of copper plating adhesion on silane modified PET film by ultrasonic–assisted electroless deposition,” Applied Surface Science, vol. 256, pp.3554-3558, 2010.
    [62] J. Ouyang, M. Chang, Y. Zhang and X. Li, “CdSe-sensitized TiO2 nanotube array film fabricated by ultrasonic-assisted electrochemical deposition and subsequently wrapped with TiO2 thin layer for the visible light photoelectrocatalysis,” Thin Solid Films, vol. 520, pp. 2994-2999, 2012.
    [63] 顏文祥,過氧鈦酸在低溫漿料及高溫製程中對染料敏化太陽能電池效能影響之研究,中原大學,碩士論文,2011。
    [64] 物質安全資料表,硝酸鋰,台北:行政院勞工委員會,2007。
    [65] 物質安全資料表,硝酸鈉,台北:行政院勞工委員會,2006。
    [66] 物質安全資料表,硝酸鉀,台北:行政院勞工委員會,2006。
    [67] D. J. Kim, S. H. Hahn, S. H. Oh and E. J. Kim, “Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating, Meterials Letters,” vol. 57, pp. 355-360, 2002.

    下載圖示
    QR CODE