研究生: |
黃沛語 |
---|---|
論文名稱: |
新降尺度預報於颱風軌跡季節模擬的應用 |
指導教授: | 鄒治華 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 颱風 、降尺度方法 、颱風軌跡 、季內震盪 |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
颱風模擬對西北太平洋地區有其重要性,故本研究採用Emanuel et al.(2006)提出一種不需龐大計算資源,即可精確模擬大西洋颶風軌跡長期變化的降尺度方法,來模擬西北太平洋熱帶風暴軌跡。由於西北太平洋與大西洋的大尺度背景風場不盡相同,為探討駛流層高度、β偏移效應及季內震盪對西北太平洋氣旋軌跡的影響,因此本研究調整Emanuel方法,共設計六種熱帶風暴軌跡降尺度方法。
西北太平洋熱帶風暴氣候軌跡可分為向西北、向西與向北轉向三種,因此本研究將颱風侵襲區域分為向西北影響台灣與中國東部沿海之A區、向西行至菲律賓之B區,及向北轉向影響日本之C區。結果顯示850 hPa和200 hPa加權與850 hPa至300 hPa平均質量加權之兩種駛流層,皆適用於西北太平洋地區。而隨緯度增加向北分量的β偏移數值,可改善等值β偏移之模擬軌跡移速。季內振盪對130 oE以西影響顯著,增加向西北移行影響台灣之軌跡,明顯改進夏秋兩季熱帶風暴影響在A區的氣候模擬。
熱帶風暴影響三大區域皆有明顯年際變化,然而A區秋季有緩慢上升趨勢,C區有年代際震盪訊號,B區長期訊號則不明顯。降尺度方法在年際變化模擬,可掌握三區域大致隨時間變化趨勢,夏季整體模擬較秋季佳。影響台灣與中國東部的A區模擬,兩季皆以10天以上低頻訊號環境風場較為適用,亦掌握到秋季緩慢增加趨勢;侵襲日本之C區模擬,以月平均風場為環境流場方法較佳。顯示季內振盪與太平洋副高分別是影響颱風向西北與向北轉向的重要因素。
本研究建立之降尺度方法,基本上可掌握西北太平洋地區夏秋兩季氣候熱帶風暴軌跡特徵,以及熱帶風暴影響區域之氣候場與年際變化。因此若大尺度風場與季內震盪模擬良好,可利用本研究降尺度方法來模擬熱帶風暴軌跡。
徐邦琪、鄒治華、柯文雄、許晃雄,2005:西北太平洋地區颱風季季內振盪年際變化之研究。大氣科學,33,29-48。
陳冠杰,2010:秋季熱帶氣旋能量之年代際變化探討。國立台灣師範大學地球科學系碩士論文。
Bengtsson L., K. I. Hodges and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: comparison with observations and re-analyses. Tellus, 59, 396-416.
Camargo, A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A, 589–604.
——, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996-3006.
Carr, L. E., a nd R. L. Elsberry, 1990: Observational evidence for predictions of tropical cyclone propagation relative to steering. J. Atmos. Sci., 47, 542-546.
Chan, J. C. L., 1995: Tropical cyclone activity in the western North Pacific in relation to the stratospheric quasi-biennial oscillation. Mon. Wea. Rev., 123, 2567-2571.
——, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific, Meteorol. Atmos. Phys., 89, 143– 152.
——, J. C. L., and K. S. Liu, , 2004:Global Warming and Western North Pacific Typhoon Activity From an Observational Perspective. J. Climate., 17, 4590-4602.
Chen, T.C., S. P. Weng, N. Yamazaki, and S. Kiehne,1998: Interannual variation in the tropical cyclone formation over the western north Pacific. Mon. Wea. Rev., 126, 1080–1090.
——, T.C., S.Y. Wang, and M.C. Yen, 2006: Interannual Variation of the Tropical Cyclone Activity over the Western North Pacific. J. Climate., 19, 5709–5720.
——, G., and C.-H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer, J. Geophys. Res., 115, D14113.
Cheung, K.K.W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17, 466–484.
Chio,K.-S., and H.-R. Byun ,2010: Possible relationship between western North Pacific tropical cyclone activity and Arctic Oscillation. Theor Appl Climatol., 100, 261-274.
Chu, P.S., 2002: Large-Scale Circulation Features Associated with Decadal Variations of Tropical Cyclone Activity over the Central North Pacific. J. Climate, 15, 2678–2689.
DeMaria, M., J.A. Knaff, and B.H. Connell, 2001: A tropical cyclone genesis parameter for the Tropical Atlantic. Wea. Forecasting, 16:2, 219-233.
Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 4797-4802.
——, S. Ravela, E. Vivant and C. Risi. 2006: A statistical-deterministic spproach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299-314.
Garner, Stephen T., Isaac M. Held, Thomas Knutson, and Joseph Sirutis, 2009: The Roles of Wind Shear and Thermal Stratification in Past and Projected Changes of Atlantic Tropical Cyclone Activity. J Clim, 22, 4723-4734.
Gray W.M, 1975: Tropical cyclone genesis. Dept. of Atmospheric Science Paper 234, Colorado State University, Fort Collins, CO, 121 pp
Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, C. H. Sui, 2004: Interdecadal change in summerime typhoon track. J. Climate., 17, 1767-1776.
——, C. H., H. S. Kim, J. H. Jeong, and S. W. Son, 2009: Influence of Stratospheric Quasi-Biennial Oscillation on Tropical Cyclone Tracks in Western North Pacific. Geophys. Res. Lett., 36, L06702.
Holland, Ed., 1993: Tropical cyclone motion. Global Guide to Tropical Cyclone Forecasting, World Meteorological Organization Tech.Document WMO/TD 560, Tropical Cyclone Programme Rep. TCP-31, Geneva, Switzerland.
——, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a β effect. J. Atmos. Sci., 40, 328–342.
Kim, J.-H., C.-H. Ho, H.-S. Kim, C.-H. Sui, and S. K. Park, 2008: Systematic Variation of Summertime Tropical Cyclone Activity in the Western North Pacific in Relation to the Madden–Julian Oscillation. J. Climate, 21, 1171-1191.
Knutson T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteror. Soc. 88, 1549-1565.
Ko, K.-C., and H.-H. Hsu, 2006: Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July-August season. J. Meteor. Soc. Japan, 84, 871-889.
——, K.-C., and H.-H. Hsu, 2009: ISO Modulation on the Sub-monthly Wave Pattern and the Recurving Tropical Cyclones in the Tropical Western North Pacific. J. Climate, 22, 982-599.
Liu, K.S., and J.C.L. Chan, 2008: Interdecadal variability of western north pacific tropical cyclone tracks. J. Climate, 21, 4464-4476.
Maloney, E. D., and D. L. Hartmann, 2001: The Madden Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2845-2558.
Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105–117.
McBride, J. L., 1995: Tropical cyclone formation. Global Perspective on Tropical Cyclones, WMO Tech Doc. 693, World Meteorological Organization, 63-105.
Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027-2043.
Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci., 49, 140-153.
Sobel, A. H. and E. D. Maloney, 2000: Effect of ENSO and the MJO on western north Pacific tropical cyclones. Geophys. Res. Lett., 27,1739–1742.
Vitart F., J. L. Anderson, and W. F. Stern, 1997: Simulation of the interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745-760.
——, D. Anderson, and T. Stockdale, 2003: Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate, 16, 3932–3945.
Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307-2314.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate., 15, 1643-1658.
——, B., and X. Li, 1992: The beta drift of three-dimensional vortices: A numerical study. Mon. Wea. Rev., 120, 579-593.
Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005:Change in Tropical Number, Duration, and Intensity in a Warming Environmen. Science, 308,1753-1754.
Wu, L., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686-1698.
Xie L, Yan T (2007) West North Pacific typhoon track patterns and their potential connection to Tiβn Plateau snow cover. Nat Hazards 42,317-333.
Yumoto, M., and T. Matsuura, 2001: Interdecadal variability of tropical cyclone activity in the western north pacific. J. Meteor. Soc. Japan, 79, 23-35.