簡易檢索 / 詳目顯示

研究生: 邱貞瑜
論文名稱: 探討D-cycloserine 促進條件化恐懼消減作用中即始基因zif268之表現
指導教授: 呂國棟
Lu, Kwok-Tung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 條件化恐懼消減作用杏仁核
論文種類: 學術論文
相關次數: 點閱:236下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 條件化恐懼記憶消減作用(extinction of conditioned fear)的神經分子作用機制,是近年來許多神經科學研究者所關心的研究課題,希望能夠藉由釐清其作用機制,以增加對於神經可塑性的瞭解,並且能對於臨床上治療恐懼失調之相關疾病有所助益。
    於前人的研究指出,由腹腔或直接於中樞杏仁核投予麩胺酸NMDA型受器致效劑D-cycloserine(DCS),可藉由活化mitogen activated protein kinase(MAPK)訊息傳遞路徑,促進條件化恐懼之消減作用,然而其下游之基因調控機制,迄今尚未完全明瞭。即始基因zif268為可被誘發之轉錄因子(inducible transcription factors)之一,能被多種刺激所活化,其蛋白質產物一旦被轉譯後,會立即進入細胞核內,調節其他基因之表現,造成神經可塑性之改變,近期的研究結果顯示zif268參與了條件化恐懼記憶的形成。
    本研究利用恐懼所促進之動物驚跳反應(fear-potentiated startle)行為模式,及投予zif268反意義股之寡去氧核苷酸(antisense oligodeoxynucleotide)於杏仁核內,探討DCS所促進之條件化恐懼記憶消減作用是否與即始基因zif268的表現有關。本實驗結果顯示:(1)於條件化恐懼消減作用訓練前30分鐘,經由腹腔注射投予30 mg/ kg之DCS,可以有效促進消減作用的表現。(2)於條件化恐懼消減作用訓練前90分鐘,於杏仁核直接投予zif268 反意義股之寡去氧核苷酸,可以有效抑制DCS對消減作用之促進效果。(3)於條件化恐懼消減作用訓練前90分鐘,於杏仁核直接投予zif268 反意義股之寡去氧核苷酸,可以有效抑制Zif268蛋白質的表現,而使DCS對消減作用之促進效果降低。
    本研究結果初步證實,DCS所促進之條件化恐懼消減作用,極可能是透過zif268之調節機制,啟動更下游之基因表現,造成神經可塑性之改變。期盼本研究能夠對於恐懼的學習與記憶之神經分子機制的研究,及未來對於恐懼失調疾病之治療有所貢獻。

    In recent years, many neuroscience scientists concern about the neural mechanisms of the extinction of conditioned fear. They hope to investigate the mechanisms to know more about the neural plasticity, and can use to treat the clinical anxiety disorders.
    Recent results suggest that the amygdala plays a key role in fear extinction, and an important component of extinction is activation of glutamatergic NMDA receptors in amygdala. Scientists used systemic administration and direct amygdalar infusion of D-cycloserine (DCS), one of partial NMDA receptor agonists, into rats can facilitate extinction. And the facilitation is activated by the mitogen activated protein kinase (MAPK) signal transduction pathway. However, the mechanisms of downstream regulation are unknown. zif268 belongs to the category of immediate early genes (IEG), act as a transcription factor, zif268 protein, Zif268, can be activated by many stimulus. When once it is translated, it transports into nucleus immediately, controls expression of other genes, and associates synaptic plasticity. Recent studies suggest that zif268 plays a critical role in formation of conditioned fear memory.
    In this study, we used fear-potentiated startle and direct amygdalar infusion of zif268 antisense oligodeoxynucleotide to investigate whether facilitating extinction of fear memory by DCS is related to the expression of zif268. Our results shown that administration of DCS 30 minutes prior to the extinction training can facilitate the expression of extinction. Direct amygdalar infusion of zif268 antisense oligodeoxynucleotide 90 minutes prior to the extinction training can block the expression of extinction facilitated by DCS and also decrease the expression of Zif268 protein.
    Our study provide evidence that the facilitation of DCS effect on the extinction of conditioned fear is meditated by zif268. It starts downstream signal transduction pathway and alters synaptic plasticity. We expect that the study will contribute to the development of new treatment for anxiety disorders.

    壹、中文摘要(Abstract in Chinese)-----------------------------------------------1 貳、英文摘要(Abstract in English)------------------------------------------------2 參、緒論(Introduction) 一、研究背景(Study Background)-------------------------------------------3 二、研究問題(Study Question)---------------------------------------------12 三、研究目的(Study purpose)----------------------------------------------12 肆、研究材料與方法(Materials and Methods) 一、研究材料(Materials) A. 實驗動物(Animals)-------------------------------------------------13 B. 實驗藥品(Drugs)----------------------------------------------------13 二、研究方法(Methods) A. 恐懼所促進之動物驚跳反應(Fear-potentiated startle)-------14 B. 藥物投予方式(Drug administration)-----------------------------17 C. 立體定位手術(Stereotaxic surgery)------------------------------17 D. 組織冷凍切片(Frozen section)------------------------------------18 E. 組織學鑑定(Histology)---------------------------------------------18 F. 西方墨漬法(Western blotting analysis)---------------------------19 G. 統計方法(Statistical analysis)-------------------------------------24 伍、實驗結果(Results) -----------------------------------------------------------25 陸、討論(Discussion) -------------------------------------------------------------35 柒、參考文獻(References)---------------------------------------------------------39 捌、附圖/表(Figures and Tables)-------------------------------------------------47

    Beckmann AM and Wilce PA (1997) Egr transcription factors in the nervous system. Neurochem Int 31: 477-510.

    Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52: 976-986.

    Cao XM, Koski RA, Gashler A, McKiernan M, Morris CF, Gaffney R, Hay RV, Sukhatme VP (1990) Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and the growth signals. Mol Cell Biol 10: 1913-1939.

    Chiasson BJ, Hong MG, Robertson HA (1998) Intra-amygdala infusion of an end-capped antisense oligodeoxynucleotide to c-fos accelerates amygdala kindling. Mol Brain Res 57: 248-256.

    Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474-476.

    Cox J and Westbrook R (1994) The NMDA receptor antagonist MK-801 blocks acquisition and extinction of conditioned hypoalgesia responses in the rat. Quarterly J Exp Psychol 47: 187-210.

    Criado M, del Toto ED, Carrasco-Serrano C, Smillie FI, Juiz JM, Viniegra S, Ballesta JJ (1997) Differential expression of α-bungarotoxin-sensitive neuronal nicotinic receptors in adrenergic chromaffin cells: a role for transcription factor egr-1. J Neurosci 17: 6554-6564.

    Davis M (1992) The role of the amygdala in fear-potentiated startle: implication for animal models of anxiety. Trends Pharmacol sci 13: 35-40.

    Davis M (2000) The role of the amygdala in conditioned and unconditioned fear and anxiety. The amygdala 2: 213-287.

    Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17: 208-214.

    Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20: 4563-4572.

    Davis S, Bozon B, Laroche S ( 2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142: 17-30.

    Donley MP, Schulkin J, Rosen JB (2005) Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextual fear. Behav Brain Res 164: 197-205.

    Doron NN and LeDoux JE (2000) Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol 425: 257-274.

    Falls WA, Miserendino MJD, Davis M (1992) Extinction of fear-potentiation startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12: 854-863.

    Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 110: 73-81.

    German S, Monica RMV, James LM, Jorge HM, Ivan I (2003) The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippcampus 13: 53-58.

    Ghosh A, Ginty DD, Bading H, Greenberg ME (1994) Calcium regulation of gene expression in neuronal cells. J Neurobiol 25: 294-303.

    Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory a molecular framework. Nature 322: 419-422.

    Grimm R and Tischmeyer W (1997) Complex patterns of immediate early gene induction in rat brain following brightness discrimination training and pseudotraining. Behav Brain Res 84: 109-116.

    Groenewegen HJ and Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Progress in Brain Research 126: 3-28.

    Guzowski J (2002) Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus 12: 86-104.

    Hall J, Thomas KL, Everitt BJ (2000) Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 3: 533-535.

    Hebb MO and Robertson HA (1997) End-capped antisense oligodeoxynucleotides effectively inhibit gene expression in vivo and offer a low-toxicity alternative to fully modified phosphorothioate oligodeoxynucleotides. Mol Brain Res 47: 223-228.

    Herdegen T and Leah JD (1998) Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Korx, and CREB/ATF proteins. Brain Res Rev 28: 370-490.

    Herry C, Vouimba RM, Garcia R (1999) Plasticity in the thalamoprefrontal cortical transmission in the behaving mice. J Neurophysiol 82: 2827-2832.

    Herry C and Garcia R (2002) Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintainance of extinction of learned fear in mice. J Neurosci 22: 577-583.
    Hersco-Levy U, Kremer I, Javitt DC, Goichman R, Reshef A, Blanura M, Cohen T (2002) Pilot-controlled trial of D-cycloserine for the treatment of post-traumatic stress disorder. Int J Neuropsychopharmacol 5: 301-307.

    Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B, Laroche S, Davis S (2001) A requirement for the immediate early gene zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4: 289-296.

    Kalra PS and Kalra SP (2000) Use of antisense oligodeoxynucleotides to study the physiological functions of neuropeptide Y. Methods 22: 249-254.

    Kevin AC and Stephen M (2001) Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J Neurosci 21: 1720-1726.

    Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5: 348-355.

    Killcross S, Robbins TW, Everitt BJ (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388: 377-380.

    Kim JJ and Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256: 675-677.

    Knapska E and Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Neurobiol 74: 183-211.

    LarBar KS, Gatenby JC, Gore JC, LeDoux JE (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20: 238-243.

    LeDoux JE, Morrison SF, Reis DJ (1986) The geniculo-amygdala projection: eletrophysiological characteristics of cells in a fear conditioning pathway. Society for Neurosci 12: 748.

    LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990a) The lateral amygdale nucleus: sensory interface of the amygdale in fear conditioning. J Neurosci 10: 1062-1069.

    LeDoux JE, Frab CF, Ruggiero DA (1990b) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10: 1043-1045.

    LeDoux JE and Muller J (1997) Emotional memory and psychopathology. Phil Trans R Soc Lond 352: 1719-1726.

    Lebron K, Milad MR, Quirk GJ (2004) Delayed recall of fear extinction in rats with lesions of ventral medial prefrontal cortex. Learn Mem 11: 544-548.

    Lee H and Kim JJ (1998) Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J Neurosci 18: 8444-8454.

    Lee SL, Sadovsky Y, Swirnoff AH, Polish JA, Goda G, Gavrilina G, Milbrandt J (1996) Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273: 1219-1221.

    Lemaire P, Vesque C, Schmitt J, Stunnenberg H, Frank R, Charnay P (1990) The serum-inducible mouse gene Krox-24 encodes a sequencespecific transcriptional activator. Mol Cell Biol 10: 3456-3467.

    Lin CH, Yeh CH, Lu HY, Gean PW (2003) The similarity and diversity of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J Neurosci 23: 8310-8317.

    Lonze BE and Ginty DD ( 2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35: 605-623.

    Lu KT, Walker DL, Davis M (2001) Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J Neurosci 21: 162-164.

    Mack K, Day M, Milbrandt J, Gottlieb DI (1990) Localization of the NGFI-A protein in the rat brain. Mol Brain Res 8: 177-180.

    Malkani S and Rosen JB (2000) Differential expression of EGR-1 mRNA in the amygdala following diazepam in contextual fear conditioning. Brain Res 860: 53-63.

    Malkani S and Rosen JB (2001) N-methyl- D-aspartate receptor antagonism blocks contextual fear conditioning and differentially regulates early growth response-1 mRNA expression in the amygdala: implications for a functional amygdaloid circuit of fear. Neurosci 102: 853-861.

    Malkani S, Wallace KJ, Donley MP, Rosen JB (2004) An egr-1 (zif268) antisense oligodeoxynucleotide infused into amygdala disrupts fear conditioning. Learn Mem 11: 617-624.

    Maren S, Aharonov G, Stote D, Fanselow M (1996) N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behav Neurosci 110: 1365-1374.

    Maren S and Fanselow MS (1996) The amygdala and fear conditioning: has the nut been cracked? Neuron 16: 237-240.

    Maren S, Aharonov G, Fanselow MS (1997) Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 88: 261-274.

    Marks I (1987) The development of normal fear: a review. J Child Psychiatry 28: 667-697.

    Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238: 797-799.

    Milad MR and Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420: 70-74.

    Miyashita Y, Kameyama M, Hasegawa I, Fukushima T (1998) Consolidation of visual associative long-term memory in the temporal cortex of primates. Neurobiol Learn Mem 70: 197-211.

    Morgan MA and LeDoux JE (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109: 681-688.

    Morgan NA, Romanski LM, LeDoux JE (1993) Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163: 109-113.

    Myers KM and Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36: 567-584.

    O’Donovan KJ, Tourtellotte WG, Milbrandt J, Baraban JM (1999) The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22: 167-173.

    Pavlov I (1927) Conditioned reflexes. Oxford: Oxford University Press.

    Paxinos G and Watson C (1997) The Rat Brain in Stereotaxic Coordinates, Compact 3rd Edition, Academic Press, San Diego.

    Petersohn D, Schoch S, Brinkmann DR, Thiel G (1995) The human synapsin II gene promotor: possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem 270: 24361-24369.

    Port R and Seybold K (1998) Manipulation of NMDA-receptor activity alters extinction of an instrumental response in rats. Physiol Behav 64: 391-393.

    Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20: 6225-6231.

    Rescorla RA (1993) Inhibitory associations between S and R in extinction. Anim Learn Behav 21: 327-336.

    Rescorla RA and Wagner AR (1972) A theory of Pavlovian conditioning: variations in effectiveness of reinforcement and nonreinforcement. In Classical conditioning H: Current research and theory: 64-99.

    Ressler KJ, Paschall G, Zhou XL, Davis M (2002) Regulation of synaptic plasticity genes during consolidation of fear conditioning. J Neurosci 22: 7892-7902.

    Ressler KJ, Rothbaum BO, Tannebaum L, Anderson P, Grapp K, Zimand E, Hodges L, Davis M (2004) Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobics to facilitate extinction of fear. Arch Gen Psychiatry 61: 1136-1144.

    Richard F, Thompson, Jeansok JK (1996) Memory system in the brain and localization of memory. Proc Natl Sci USA 93: 13438-13444.

    Rogan MT and LeDoux JE (1996) Emotion: systems, cells, synaptic plasticity. Cell 85: 469-475.

    Rolli M, Kotlyarov A, Sakamoto KM, Gaestel M, Nieninger A (1999) Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promotor element in a MAPKAP kinase-2-independent manner. J Biol Chem 274: 19559-19564.

    Rosen JB, Fanselow MS, Young SL, Sitcoske M, Maren S (1998) Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Res 796: 132-142.

    Santini E, Ren HGeK, Pe˜na de Ortiz S, Quirk GJ (2004) Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 24: 5704-5710.

    Schafe GE and LeDoux JE (2002) Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 96: 1-5.

    Shi CJ and Davis M (1999) Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J Neurosci 19: 420-430.

    Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21: 127-148.

    Silverman ES and Collins T (1999) Pathways of egr-1 mediated gene transcription in vascular biology. Am J Pathol 154: 665-670.

    Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T (1998) cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1). J Biochem 336: 183-189.

    Spencer SJ, Buller KM, Day TA (2005) Medial prefrontal cortex control of the araventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. J Comp Neurol 481: 363-376.

    Squire LR and Zola SM (1996) Structure and function of declarative and nondeclarative memory system. Proc Natl Acad Sci 93: 13505-13514.

    Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, Shows TB, Curran T, Le Beau MM, Adamson ED (1998) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37-43.

    Sullivan RM and Gratton A (2002) Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology 27: 99-114.

    Sullivan RM (2004) Hemispheric asymmetry in stress processing in rat prefrontal cortex and the role of mesocortical dopamine. Stress 7: 131-143.
    Svaren J, Ehrig T, Abdulkadir SA, Ehrengruber MU, Watson MA, Milbrandt J (2000) EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J Biol Chem 275: 38524-38531.

    Szklarczyk A and Kaczmarek L (1997) Pharmacokinetics of antisense analogues in the central nervous system. Neurochem Int 31: 413-423.

    Thiel G and Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193: 287-292.

    Thiel G, Schoch S, Petersohn D (1994) Regulation of synapsin I gene expression by the zinc finger transcription factor zif268/egr-1. J Biol Chem 269: 15294-15301.

    Tischmeyer W and Grimm R (1999) Activation of immediate early genes and memory formation. Cell Mol Life Sci 55: 564-574.

    Van Oekelen D, Luyten WH, Leysen JE (2003) Ten years of antisense inhibition of brain G-protein-coupled receptor function. Brain Res Rev 42: 123-142.

    Virolle T, Krones-Herzig A, Baron V, De Gregorio G, Adamson ED, Mercola D (2003) Egr1 promotes growth and survival of prostate cancer cells: identification of novel Egr1 target genes. J Biol Chem 278: 11802-11810.

    Walker DL and Davis M (1997) Double dissociation between the involovement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in light-enhanced versus fear-potentiated startle, and extinction. J Neurosci 17: 9375-9383.

    Walker DL and Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71: 379-392.

    Walker DL, Ressler KJ, Lu KT, Davis M (2002) Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusion of D-cycloserine assessed with fear-potentiated startle in rats. J Neurosci 22: 2343-2351.

    Waters CM, Hancock DC, Evan GI (1990) Identification and characterization of the egr-1 gene product as an inducible, short-lived, nuclear phosphoprotein. Oncogene 5: 669-674.

    Wei F, Xu ZC, Qu Z, Milbrandt J, Zhuo M (2000) Role of EGR-1 in hippocampal synaptic enhancement induced by tetanic stimulation and amputation. J Cell Biol: 1325-1334.

    Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TV, Hunt SP (1990) Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4: 603-614.

    Worley PF, Christy BA, Nakabeppu Y, Bhat RV, Cole AJ, Baraban JM (1991) Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc Natl Acad Sci USA 88: 5106-5110.

    Worley PF, Bhat RV, Baraban JM, Erickson CA, McNaughton BL, Barnes CA (1993) Thresholds for synaptic activation of transcription factors in hippocampus: correlation with long-term enhancement. J Neurosci 13: 4776-4786.

    Yang YL and Lu KT (2005) Facilitated of conditioned fear extinction by D-cycloserine is mediated by mitogen activated protein kinase and PI-3 kinase cascades and requires de novo protein synthesis in basolateral nucleus of amygdala. Neurosci 134: 247-260.

    QR CODE