研究生: |
簡佑芩 |
---|---|
論文名稱: |
(I)微粒體甲烷單氧化酵素之結構與功能性模型三核銅金屬簇化物之研究 (II)似單氧化酵素之三核錳金屬簇化物對烷類分子氧化催化之研究 (I)Structrual and Functional Models for the Trinuclear Copper Clusters of the Particulate Methane Monooxygenase (II)Monooxygenase-like Oxygenation of Alkane Molecules Catalyzed by Trinuclear Manganese Complex |
指導教授: | 陳炳宇 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
中文關鍵詞: | 三核銅 、三核錳 |
論文種類: | 學術論文 |
相關次數: | 點閱:186 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在第一個研究中,我們成功合成一新穎的三核銅金屬簇離子化合物 [CuICuICuI(7-dipy)](BF4) (2),可成功催化氧化環己烷的 CH 鍵 (CH 鍵能為 99.3 kcal mol-1)。並藉由 ESI-MS 光譜證實經氧氣可得穩定的三核銅金屬簇含氧離子化合物 [CuIICuII(-O)CuII(7-dipy)](BF4)2 (3)。在室溫、常壓下利用 50 當量的 H2O2 催化氧化環己烷的 CH 鍵,根據 GC-MS 光譜定量分析及氧化劑的消耗量,可得轉換率 34% 的環己醇和環己酮的混合產物。然而,當利用 [CuIICuII(-O)CuII(7-dipy)](BF4)2 (3) 化合物取代 [CuICuICuI(7-dipy)](BF4) (2) 在相同反應條件下對氧化環己烷是幾乎沒有反應的。此外,[CuICuICuI(7-dipy)](BF4) (2) 進行催化反應後,仍可由 ESI-MS 光譜確認也可得到 [CuIICuII(-O)CuII(7-dipy)](BF4)2 (3) 化合物,證實此三核銅金屬簇離子化合物是一相當強健的催化劑。
在第二個研究中,我們利用相同的 7-dipy 配位基成功合成三核錳金屬簇離子化合物,首先合成出 [MnII(OAc)2MnII(-OAc)2MnII(7-dipy)] (2) 作為高價態的錳金屬簇離子化合物的前驅物。接著,藉由二當量 TBHP (tert-butylhydroperoxide)氧化 [MnII(OAc)2MnII(-OAc)2MnII(7-dipy)] (2) 可得一組 16 根特徵吸收之 EPR 光譜,由模擬軟體可得 gx= 2.006, gy= 1.998, gz= 1.985, AIIIxx= -16.3 mT, AIIIyy= -11.7 mT, AIIIzz= -16.2 mT, AIVxx= 8.2 mT, AIVyy= 8.0 mT, AIVzz= 7.4 mT,在此假定得到一活性中間體 [MnIIIMnIII(-O)2MnIV(7-dipy)]4+ (3) 化合物。當加入過量的 TBHP 至 15 當量時,仍可看到16 根特徵吸收之 EPR 光譜。 [MnIIIMnIII(-O)2MnIV(7-dipy)]4+ (3) 可催化氧化環己烷 (CH 鍵能為 99.3 kcal mol-1) 得到環己醇和環己酮的混合產物,亦可氧化正己烷的第二號及第三號碳位置上的 CH 鍵 (CH 鍵能分別為 98 kcal mol-1 和 99.1 kcal mol-1) 可得2-己醇、3-己醇、2-己酮、3-己酮的混合產物。此催化劑除了氧化二級碳 (secondary carbon) 上的 CH 鍵外,利用乙烷當作受質,可氧化一級碳上的CH 鍵 (CH 鍵能為 101 kcal mol-1),得到 6 個氧化當量的乙酸產物。利用同樣的催化劑以乙醇當作受質,也會被氧化形成乙酸產物,為氧化乙烷分子的間接佐證。
In first study, a new modified trinuclear copper complex,
[CuICuICuI(7-dipy)](BF4) (2), was first employed as a catalyst to oxidize the CH bonds of cyclohexane (CH BDE is 99.3 kcal mol-1). ESI-MS spectra demonstrate that the oxygenation of [CuICuICuI(7-dipy)](BF4) (2)either by dioxygen will obtain a stable [CuIICuII(-O)CuII(7-dipy)](BF4 )2(3) complex. The catalysis of CH bond oxygenation of cyclohexane was carried out under room temperature in the presence of 50 equivalents of oxidant, and a product mixture of cyclohexanol and cyclohexanone were observed with 34% conversion according to the consuming of the oxidant by the quantitative GC-MS analysis. However, there is nearly no reaction by employing [CuIICuII(-O)CuII(7-dipy)](BF4)2 (3) complex instead of [CuICuICuI(7-dipy)](BF4) (2). This tricopper complex is a quite robust catalyst because most the remainders after the catalytic reaction are in the form of [CuIICuII(-O)CuII(7-dipy)](BF4)2 (3)evidenced by ESI-MS spectra.
In second study, the same 7-dipy ligand was also adopted in the synthesis of trinuclear manganese complex. A first trimanganese complex [MnII(OAc)2MnII(-OAc)2MnII(7-dipy)] (2) was first synthesized as a precursor for the high-valent manganese species. Further oxidation of [MnII(OAc)2MnII(-OAc)2MnII(7-dipy)] (2) by treating two equivalents of TBHP (tert-butylhydroperoxide) is able to obtain a 16-line characteristic EPR spectrum with gx= 2.006, gy= 1.998, gz= 1.985, AIII xx=-16.3 mT, AIII yy= -11.7 mT, AIII zz= -16.2 mT, AIV xx= 8.2 mT, AIV yy= 8.0 mT, AIV zz= 7.4 mT acquired by simulation, which is postulated as a active intermediate, [MnIIIMnIII(-O)2MnIV(7-dipy)]4+ (3). While excess of TBHP up to 15 equivalents were added, and the 16-line EPR spectra still remain unchanged. [MnIIIMnIII(-O)2MnIV(7-dipy)]4+ (3) is able to catalyze the oxidation of CH bonds of cyclohexane (CH BDE is 99.3 kcal mol-1) to a mixture of cyclohexanol and cyclohexanone, CH bonds of n-hexane in the C-2 and C-3 position (CH BDE is 98 kcal mol-1 and 99.1 kcal mol-1, respectively) to a mixture of 2-hexanol, 3-hexanol, 2-hexanone and 3-hexanone. Except the CH bond oxidation in the secondary carbon atom position, ethane molecule which merely has primary CH bonds (CH BDE is 101 kcal mol-1) was applied as the substrate, and the suspected acetic acid product involving 6 oxidation equivalents was found. Ethanol molecule (CH BDE is 95.6 kcal mol-1) as the substrate was also oxidized in the same catalysis to form the acetic acid product, providing the support for the oxidation of ethane molecule.
1. Periana, R. A.; Bhalla, G.; Tenn, W. J.; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C. J.; Ziatdinov, V. R., Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction. J. Mol. Catal. A-Chem. 2004, 220 (1), 7-25.
2. Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. A.; Unger, N.; Bauer, S. E., Improved Attribution of Climate Forcing to Emissions. Science 2009, 326 (5953), 716-718.
3. Hanson, R. S.; Hanson, T. E., Methanotrophic bacteria. Microbiol. Rev. 1996, 60 (2), 439-471.
4. Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J., Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 2004, 43 (15), 4421-4430.
5. Feig, A. L.; Lippard, S. J., Reactions of Nonheme Iron(Ii) Centers with Dioxygen in Biology and Chemistry. Chem. Rev. 1994, 94 (3), 759-805.
6. Lipscomb, J. D., Biochemistry of the Soluble Methane Monooxygenase. Annu. Rev. Microbiol. 1994, 48, 371-399.
7. Semrau, J. D.; Chistoserdov, A.; Lebron, J.; Costello, A.; Davagnino, J.; Kenna, E.; Holmes, A. J.; Finch, R.; Murrell, J. C.; Lidstrom, M. E., Particulate methane monoxygenase genes in methanotrophs. J. Bacteriol. 1995, 177 (11), 3071-3079.
8. Stolyar, S.; Costello, A. M.; Peeples, T. L.; Lidstrom, M. E., Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology-(UK) 1999, 145, 1235-1244.
9. Lieberman, R. L.; Rosenzweig, A. C., Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 2005, 434 (7030), 177-182.
10. Yu, S. S. F.; Chen, K. H. C.; Tseng, M. Y. H.; Wang, Y. S.; Tseng, C. F.; Chen, Y. J.; Huang, D. S.; Chan, S. I., Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 2003, 185 (20), 5915-5924.
11. Nguyen, H. H. T.; Elliott, S. J.; Yip, J. H. K.; Chan, S. I., The particulate methane monooxygenase from methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme - Isolation and characterization. J. Biol. Chem. 1998, 273 (14), 7957-7966.
12. Nguyen, H. H. T.; Nakagawa, K. H.; Hedman, B.; Elliott, S. J.; Lidstrom, M. E.; Hodgson, K. O.; Chan, S. I., X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. J. Am. Chem. Soc. 1996, 118 (50), 12766-12776.
13. Yoshizawa, K.; Suzuki, A.; Shiota, Y.; Yamabe, T., Conversion of methane to methanol on diiron and dicopper enzyme models of methane monooxygenase: A theoretical study on a concerted reaction pathway. Bull. Chem. Soc. Jpn. 2000, 73 (4), 815-827.
14. Yoshizawa, K., Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. J. Inorg. Biochem. 2000, 78 (1), 23-34.
15. Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H. H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I.; Floss, H. G., A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1996, 118 (4), 921-922.
16. Valentine, A. M.; Wilkinson, B.; Liu, K. E.; KomarPanicucci, S.; Priestley, N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J., Tritiated chiral alkanes as substrates for soluble methane monooxygenase from Methylococcus capsulatus (Bath): Probes for the mechanism of hydroxylation. J. Am. Chem. Soc. 1997, 119 (8), 1818-1827.
17. Valentine, A. M.; LeTadic-Biadatti, M. H.; Toy, P. H.; Newcomb, M.; Lippard, S. J., Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 1999, 274 (16), 10771-10776.
18. Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H. H. T.; Yip, J. H. K.; Chan, S. I., Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1997, 119 (42), 9949-9955.
19. Huang, D. S.; Wu, S. H.; Wang, Y. S.; Yu, S. S. F.; Chan, S. I., Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis. ChemBioChem 2002, 3 (8), 760-765.
20. Yu, S. S. F.; Wu, L. Y.; Chen, K. H. C.; Luo, W. I.; Huang, D. S.; Chan, S. I., The stereospecific hydroxylation of 2,2-H-2(2) butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (bath). J. Biol. Chem. 2003, 278 (42), 40658-40669.
21. Baik, M. H.; Gherman, B. F.; Friesner, R. A.; Lippard, S. J., Hydroxylation of methane by non-heme diiron enzymes: Molecular orbital analysis of C-H bond activation by reactive intermediate Q. J. Am. Chem. Soc. 2002, 124 (49), 14608-14615.
22. Baik, M. H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J., Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 2003, 103 (6), 2385-2419.
23. Chen, P. P. Y.; Chan, S. I., Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. J. Inorg. Biochem. 2006, 100 (4), 801-809.
24. Chen, P. P. Y.; Yang, R. B. G.; Lee, J. C. M.; Chan, S. I., Facile O-atom insertion into C-C and C-H bonds by a trinuclear copper complex designed to harness a singlet oxene. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (37), 14570-14575.
25. Lu, Y.-R., Comprehensive Handbook of Chemicl Bond Energies. CRC, Taylor & Francis Group: Boca Raton FL, 2007.
26. Whyman, R., Applied Organometallic Chemistry and Catalysis. Oxford University Press, Oxford: 2001.
27. Shilov, A. E.; Shul'pin, G. B., Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
28. Catalytic Activation and Functionalisation of Light Alkanes. In NATO ASI series, E. D. Derouane, J. Haber, F. Lemos, F. Ramoanes ed.; Kluwer Academic Publ.: Dordrecht, The Netherlands, 1998.
29. The Activation of Dioxygen and Homogeneous Catalytic Oxidation. D. Barton, A. E. Martell, D. T. Sawyer ed.; Plenum Press: New York, 1993.
30. Shilov, A. E.; Shul'pin, G. B., Chem. Rev. 1997, 97, 2879.
31. Schuchardt, U.; Cardoso, D.; Sercheli, R.; Pereira, R.; de Cruz, R. S.; Guerreiro, M. C.; Mandelli, D.; Spinace, E. V.; Fires, E. L., Cyclohexane oxidation continues to be a challenge. Appl. Catal. A-Gen. 2001, 211 (1), 1-17.
32. Bregeault, J. M., Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies. Dalton Trans. 2003, (17), 3289-3302.
33. Shul'pin, G. B., Metal-catalyzed hydrocarbon oxygenations in solutions: The dramatic role of additives: a review. J. Mol. Catal. A-Chem. 2002, 189 (1), 39-66.
34. Shul'pin, G. B.; Nizova, G. V.; Kozlov, Y. N.; Pechenkina, I. G., Oxidations by the hydrogen peroxide manganese(IV) complex carboxylic acid system. Part 4. Efficient acid-base switching between catalase and oxygenase activities of a dinuclear manganese(IV) complex in the reaction with H2O2 and an alkane. New J. Chem. 2002, 26 (9), 1238-1245.
35. Schuchardt, U.; Carvalho, W. A.; Spinace, E. V., Why is it interesting to study cyclohexane oxidation. Synlett 1993, (10), 713-718.
36. Gamez, P.; Aubel, P. G.; Driessen, W. L.; Reedijk, J., Homogeneous bio-inspired copper-catalyzed oxidation reactions. Chem. Soc. Rev. 2001, 30 (6), 376-385.
37. Karlin, K. D.; Zuberbuhler, A. D., Bioinorganic Catalysis. 2nd ed.; J., R.; E., B., Eds. Dekker, New York, 1999; pp 469534.
38. Mimmi, M. C.; Gullotti, M.; Santagostini, L.; Battaini, G.; Monzani, E.; Pagliarin, R.; Zoppellaro, G.; Casella, L., Models for biological trinuclear copper clusters. Characterization and enantioselective catalytic oxidation of catechols by the copper(II) complexes of a chiral ligand derived from (S)-(-)-1,1 '-binaphthyl-2,2 '-diamine. Dalton Trans. 2004, (14), 2192-2201.
39. Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P., Structure and spectroscopy of copper-dioxygen complexes. Chem. Rev. 2004, 104 (2), 1013-1045.
40. Lee, D. H., Comprehensive Coordination Chemistry. 2nd ed.; Elsevier: 2003; Vol. 8, Ch. 8.17, p 437457.
41. Itoh, S., Comprehensive Coordination Chemistry. 2nd ed.; McCleverty, J. A.; Meyer, T. J., Eds. Elsevier: 2003; Vol. 8, Ch. 8.15, pp 369393.
42. Silva, J. J. R. F. d.; Williams, R. J. P., The Biological Chemistry of the Elements. Oxford University Press, Oxford: 2001.
43. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E., Multicopper oxidases and oxygenases. Chem. Rev. 1996, 96 (7), 2563-2605.
44. Klinman, J. P., Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem. Rev. 1996, 96 (7), 2541-2561.
45. Ayala, M.; Torres, E., Enzymatic activation of alkanes: constraints and prospective. Appl. Catal. A-Gen. 2004, 272 (1-2), 1-13.
46. Lieberman, R. L.; Rosenzweig, A. C., Biological methane oxidation: Regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 2004, 39 (3), 147-164.
47. Knapp, S.; Trope, A. F.; Theodore, M. S.; Hirata, N.; Barchi, J. J., Ring expansion of ketones to 1,2-keto thioketals. Control of bond migration. J. Org. Chem. 1984, 49 (4), 608-614.
48. Sobkowiak, A.; Qui, A.; Liu, X.; Llobet, A.; Sawyer, D. T., Copper(I)/(t-BuOOH)-Induced activation of dioxygen for the ketonization of methylenic carbons. J. Am. Chem. Soc. 1993, 115 (2), 609-614.
49. Chan, S. I.; Wang, V. C. C.; Lai, J. C. H.; Yu, S. S. F.; Chen, P. P. Y.; Chen, K. H. C.; Chen, C. L.; Chan, M. K., Redox potentiometry studies of particulate methane monooxygenase: Support for a trinuclear copper cluster active site. Angew. Chem.-Int. Edit. 2007, 46 (12), 1992-1994.