研究生: |
吳冠緯 Wu, Quan-Wei |
---|---|
論文名稱: |
基於積分型終端滑動模式控制之三軸音圈馬達定位平台 Integral Terminal Sliding-Mode Control for Three-Axis VCMs-based Positioning Stage |
指導教授: |
陳瑄易
Chen, Syuan-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 數位訊號處理器 、分數階微積分 、系統鑑別 、函數鏈結模糊類神經網路 、智慧型控制 、滑動模式控制 、終端滑動模式控制 、音圈馬達 |
英文關鍵詞: | Digital Signal Processor, Fractional Order Operator, Functional-Link-Based Fuzzy Neural Network, Intelligent Control, Sliding Mode Control, System Identification, Terminal Sliding Mode Control, Voice Coil Motor |
DOI URL: | https://doi.org/10.6345/NTNU202202686 |
論文種類: | 學術論文 |
相關次數: | 點閱:223 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對三軸音圈馬達定位平台發展具高精密度與強健性之智慧型定位控制系統。在本論文中,首先對所設計之三軸音圈馬達定位平台進行工作原理分析、運動模式討論與數學模型推導,再對平台進行系統鑑別以獲得各項系統參數值。接著,本論文先以滑動模式控制為基礎發展三軸音圈馬達定位控制系統,再以基於非線性滑動平面之終端滑動模式控制改良傳統滑動模式控制不能在有限時間使系統狀態收斂至零的缺點。而為了提高系統之控制精準度,本論文再引入分數階微積分運算,以分數階積分型終端滑動模式控制改善傳統滑動模式控制之位置追隨效果。最後為了確保系統在參數變化、外在干擾與摩擦力等影響下系統均具備強健性,再利用函數鏈結模糊類神經網路估測系統之不確定項,提出智慧型分數階積分終端滑動模式控制,可解決傳統滑動模式控制中切換控制之抖動現象。由於所設計之函數鏈結模糊類神經網路改良了原本模糊類神經網路之架構,並以柴比雪夫正交基底函數作為激發函數,可有效增加函數逼近能力。本論文以數位訊號處理器實現上述控制法則,並設計兩種追隨軌跡與三種控制模式,最後由實驗結果驗證所設計之控制系統確實具備良好之控制精密度與強健性。
This dissertation aimed to design robust and precise control systems for the position control of three-axis voice coil motors (VCMs)-based positioning stage. First, the theoretical principle of the VCM is analyzed. Subsequently, the operation modes and the dynamic model of the stage are introduced. To design the model-based control systems, the system parameters identification is completed in advance. Afterward, a sliding-mode control (SMC) and a terminal SMC (TSMC) are developed to control the stage upon the system stability. Because the finite time convergence of the system state is ensured, the TSMC can improve the control performance of the SMC. Moreover, a fractional order integral TSMC (FITSMC) using fractional operator is developed to perform better transient response compared with the conventional SMC. Furthermore, to improve the robustness of the FITSMC system, an intelligent FITSMC (IFITSMC) with functional-link-based fuzzy neural network (FLFNN) uncertainty estimator is further proposed. The proposed FLFNN is able to improve the nonlinear approximation capability of the conventional fuzzy neural network (FNN) based on the adopted Chebyshev orthogonal polynomial functions.
In this study, all the real-time control systems were implemented via the digital signal processor (DSP). Moreover, two reference trajectories and three test conditions were provided to evaluate the control performances of different control systems. The experimental results demonstrated the effectiveness and validity of the proposed control approaches.
[1] S. Wu, Z. Jiao, L. Yan, R. Zhang, J. Yu, and Y. C. Chen, “Development of a Direct-Drive Servo Valve With High-Frequency Voice Coil Motor and Advanced Digital Controller,” IEEE/ASME Trans. Mechatronics, vol. 19, pp. 932-942, 2014.
[2] J. J. E. Slotine and W. Li, “Applied Nonlinear Control,” Prentice-Hall, 1991.
[3] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Trans. Industrial Electronics, vol. 52, no. 2, pp. 449-509, 2005.
[4] S. C. Tan, Y. M. Lai, and C. K. Tse, “Indirect sliding mode control of power converters via double integral sliding surface,” IEEE Trans. Power Electronics, vol. 23, no. 2, pp. 600-611, 2008.
[5] B. Beltran, T. Ahmed-Ali, and M. Benbouzid, “High-order sliding-mode control of variable-speed wind turbines” IEEE Trans. Industrial Electronics, vol. 56, no. 9, pp. 3314-3321, 2009.
[6] B. Veselic, B. Perunicic-Drazenovic, and C. Milosavljevic, “Improved discrete-time sliding-mode position control using Euler velocity estimation,” IEEE Trans. Industrial Electronics, vol. 57 no. 11, pp. 3840-3847, 2010.
[7] V. Utkin, “Variable Structure systems with sliding modes,” IEEE Trans. Automatic Control, vol. 22, no. 2, pp. 212-222, 1977.
[8] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Trans. Industrial Electronics, vol. 52, no. 2, pp. 449-507, 2005.
[9] M. Zhihong and X. H. Yu, “Terminal sliding mode control of MIMO linear systems,” IEEE Trans. Circuits and Systems Part I: Fundamental Theory and Applications, vol. 44, no. 11, pp. 1065-1070, 1997.
[10] S. Yua, X. Yub, B. Shirinzadehc, and Z. Mand, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol.41, no. 11, pp. 1957-1964, 2005.
[11] M. Rahmani, A. Ghanbari, and M. M. Ettefagh, “Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator,” Mechanical Systems and Signal Processing, vol. 80, pp. 117-136, 2016.
[12] S. T. Venkataraman and S. Gulati, “Control of nonlinear systems using terminal sliding modes,” in Proc. Amer. Contr. Conf., pp. 891-893, 1992.
[13] M. Zhihong, A. P. Paplinski, and H. R. Wu, “A Robust MIMO Terminal sliding mode control scheme for rigid robotic manipulators,” IEEE Trans. Automat. Contr., vol. 39, pp. 2464-2469, 1994.
[14] C. W. Tao, J. S. Taur, and M. L. Chan, “Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 255-262, 2004.
[15] 鄧偉華:分數階微分方程的理論分析與數值計算,上海大學博士論文,2007.
[16] M. Vahedpour, A. R. Noei, and H. A. Kholerdi, “Comparison between performance of conventional, fuzzy and fractional order PID controllers in practical speed control of induction motor,” in 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 912-916, 2015.
[17] J. Huang, H. Li, F. Teng, and D. Liu, “Fractional order sliding mode controller for the speed control of a permanent magnet synchronous motor,” in 2012 24th Chinese Control and Decision Conference (CCDC), pp. 1203-1208, 2012.
[18] J. S. R. Jang, C. T. Sun, and E. Mizutani, “Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence,” IEEE Trans. Automatic, vol. 42, no. 10, pp. 1482-1484, 1997.
[19] J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Trans. Neural Networks, vol. 4, no. 1, pp. 156-159, 1993.
[20] N. C. Hammadi, “Complex-Valued Neural Networks Fault Tolerance in Pattern Classification Applications,” 2010 Second WRI Global Congress on Intelligent Systems, vol. 3, pp. 154-157, 2010.
[21] R. Danilo, H. N. Wouafo, C. Chavet, V. Gripon, L. C. Canencia, P. Coussy, “Associative Memory based on clustered Neural Networks: Improved model and architecture for Oriented Edge Detection,” 2016 Conference on Design and Architectures for Signal and Image Processing (DASIP), pp. 51-58, 2016.
[22] Z. J. Li, H. Z. Xiao, C. G. Yang, Y. W. Zhao, “Model Predictive Control of Nonholonomic Chained Systems Using General Projection Neural Networks Optimization,” IEEE Trans. Systems, Man, and Cybernetics: Systems, pp. 1313-1321, 2015.
[23] M. J. Er and C. Deng, “Obstacle avoidance of a mobile robot using hybrid learning approach,” IEEE Trans. Industrial Electronics, vol. 52,no. 3, pp. 898-905, 2005.
[24] F. J. Lin and P. H. Shen, “Robot fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1209-1225, 2006.
[25] F. J. Lin, P. H. Shieh, and P. H. Chou, “Robot adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Trans. Fuzzy Systems, vol. 16, no. 3, pp. 672-692, 2008.
[26] A. Gajate, R. E. Haber, P. I. Vega and J. R. Alique, “A transductive neuro-fuzzy controller: application to a drilling process,” IEEE Trans. Neural Networks, vol. 21, no. 7, pp. 1158-1167, 2010.
[27] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of nonlinear dynamic systems using functional link artificial neural networks,” IEEE Trans. Systems, Man and Cybern., vol. 9, pp. 254-262, 1999.
[28] J. C. Patra and A. C. Kot, “Nonlinear dynamic system identification using ChebyShev functional link artificial neural networks,” IEEE Trans. Systems, vol. 32, no. 4, pp. 505-511, 2002.
[29] K. A. Toh and W. Y. Yau, “Fingerprint and speaker verification decisions fusion using a function using a functional link network,” IEEE Trans. Systems, Manm and Cybernetics, Part C: Applications and Reviews, vol. 35, no. 3, pp. 357-370, 2005.
[30] C. H. Chen, C. T. Lin, C. J. Lin, “A functional-link-based fuzzy neural network for temperature control,” in Proceedings IEEE Foundations of Computational Intelligence Confrerence, pp. 53-58, 2007.
[31] G. Herrmann, S. S. Ge, and G. Guoxiao, “Practical implementation of a neural network controller in a hard disk drive, ” IEEE Trans. Control Systems Technology, vol. 13, pp. 146-154, 2005.
[32] H. C. Yu, T. C. Chen, and C. S. Liu, “Adaptive Fuzzy Logic Proportional-Integral-Derivative Control for a Miniature Autofocus Voice Coil Motor Actuator With Retaining Force,” IEEE Trans. Magnetics Society, vol. 50, pp. 1-4, 2014.
[33] 司麥德國際股份有限公司,http://www.smmc.com.tw/Akribis/AVM.html。
[34] http://www.young-green.com/userfile/image/knowledge1_4_06.jpg
[35] Emlo motion control, http://www.elmomc.com/.
[36] 北京高控科技有限公司,https://goo.gl/ip5fEl。
[37] 周柏寰,智慧型同動控制之龍門式定位平台,博士論文,國立東華大學電機工程學系,花蓮,2011。
[38] 馬唯科技有限公司,easyDSP-F28377xDAQ參考使用手冊,台北,2015。
[39] S. Y. Chen and F. J. Lin, “Robust Nonsingular Terminal Sliding-Mode Control for Nonlinear Magnetic Bearing System,” IEEE Trans. Control Systems Technology, vol. 19, pp. 636-643, 2011.
[40] K. Diethelm, “The Analysis of Fractional Differential Equations – An Application-Oriented Exposition Using Differential Operators of Caputo Type,” Springer, 2010.
[41] I. Podlubny, “Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications,” Mathematics in Science and Engineering, Vol. 198, 1999.
[42] 郭柏靈,蒲學科,黄鳳輝,分數階篇微分方程及其數值解,科學出版社,2011。
[43] L. Barhoumi, H. Bemri, and D. Soudani, “Discretization of uncertain linears systems with time delay via Euler’s and Tustin’s approximations,” IEEE Conference Control Engineering & Information Technology (CEIT), pp. 1-6, 2016.
[44] 維基百科,https://en.wikipedia.org/wiki/Runge%27s_phenomenon。
[45] F. J. Lin, P. H. Shieh, and P. H. Shen, “Robust recurrent-neural-network sliding-mode control for the X-Y table of a CNC machine,” IEE Proceedings-Control Theory and Applications, vol. 153, pp. 111-123, 2006.